RULED HYPERSURFACES OF EUCLIDEAN SPACE

K. ABE AND D.E. BLAIR

In [2] J.R. Vanstone and one of the authors studied a minimal hypersurface of Euclidean space E^{n+1} which admits a foliation by Euclidean ($n-1$)-planes. Such a hypersurface was shown to be either totally geodesic or the product $M^{2} \times E^{n-2}$ where M^{2} is the standard helicoid in E^{3}. In this paper we are interested in this problem, not as a minimality one, but as a cylindricity problem and in the question of whether or not the mere existence of an $(n-1)$-plane through every point implies that the surface is foliated. Our basic assumption is that for a hypersurface M immersed in E^{n+1} we have the following condition.

CONDITION $\left(^{*}\right)$. Through each point $x \in M$, there exists an entire $(n-1)$-plane contained in M.

We shall show that for a surface M in E^{3}, this implies that the surface is ruled (i.e., foliated by lines), but note that the lines of the ruling need not be the lines hypothesized. For example consider a doubly ruled surface (hyperboloid of one sheet, hyperbolic paraboloid or plane) and for the lines of condition $\left(^{*}\right)$ make a random choice between the two rulings at each point. In general if the hypersurface M is not foliated by the given $(n-1)$-planes, we have points where these planes intersect. Our main result is to show that in a neighborhood of such a point $(n-2)$-dimensions break away and we have a product structure of an open set in E^{n-2} and a piece of a surface in E^{3}. If these intersections are dense, M is the product of E^{n-2} and a doubly ruled surface. Finally we show by example that M may be foliated by $(n-1)$-planes but not have a product structure with E^{n-2} as a factor; in particular the complement of the relative null distribution is not integrable.
Let $\bar{\nabla}$ denote the standard connection on E^{n+1} and ∇ the induced connection on M; the second fundamental form α of the immersion is

Received by the editors on June 10, 1985.

