ON THE SPACE ℓ/c_o

GIORGIO METAFUNE

ABSTRACT. In this paper we correct a mistake contained in [3] and we improve and give simpler proofs of some of the results contained there. We also give a very simple proof of the fact (included in Theorem 5.6 of [5]) that the dual of every complemented subspace of ℓ^{∞}/c_o is isomorphic to $(\ell^{\infty})'$.

Introduction and notation. If T is a completely regular topological space, βT is its Stone-Cech compactification; if S is a locally compact topological space, αS is its one-point compactification. We recall some facts about ℓ^{∞} and ℓ^{∞}/c_o .

 ℓ^{∞} is isometric to $C(\beta N)$ and ℓ^{∞}/c_o is isometric to $C(\beta N \setminus N)$ (cf. **[3]**).

 ℓ^{∞} is a \mathcal{P}_1 -space, that is, it is complemented in every Banach space which contains it with a norm-one projection; $(\ell^{\infty})' = \ell^1 \oplus c_o^{\perp}$ (cf. [2]).

We use = for "isomorphic to" and \equiv for "isometric to".

If $E_n, n \in N$, are Banach spaces, then

$$(\bigoplus_n E_n)_p = \{(x_n) | x_n \in E_n \text{ and} \\ ||(x_n)||_p = (\sum_n ||x_n||^p)^{1/p} < \infty\}, \quad 1 \le p \le \infty, \\ (\bigoplus_n E_n)_\infty = \{(x_n) | x_n \in E_n \text{ and } ||(x_n)||_\infty = \sup_n ||x_n|| < \infty\}$$

and $(\bigoplus_n E_n)_{c_o}$ is the closed subspace of $(\bigoplus_n E_n)_{\infty}$ formed by the sequences (x_n) such that $\lim_n ||x_n|| = 0$.

It is easy to show that $(\bigoplus_n E_n)'_p = (\bigoplus_n E'_n)_{p'}$ if $1 \leq p < \infty$ and $\frac{1}{n} + \frac{1}{n'} = 1$ and $(\bigoplus_n E_n)'_{c_n} = (\bigoplus_n E'_n)_1$, but it is false that $(\bigoplus_n E_n)'_{\infty} = (\bigoplus_n E'_n)_1$ in general (for example, consider the case when the E'_n s are Banach spaces with separable dual).

If Γ is a set of indices let $c_o(\Gamma) = \{(x_\alpha)_{\alpha \in \Gamma} | x_\alpha \in C \text{ and for any}\}$ $\varepsilon > 0|x_{\alpha}| > \varepsilon$ only for a finite number of indices $\}$.

Copyright ©1987 Rocky Mountain Mathematics Consortium 583

Received by the editors on June 27, 1985, and in revised form on November 4, 1985.