AN α -APPROXIMATION THEOREM FOR \mathbb{R}^{∞} -MANIFOLDS

Vo Thanh Liem

0. Introduction and preliminaries. Generalizing the CE-approximation theorem of Armentrout [1,2] and Siebenmann [20] for finite-dimensional manifolds, Ferry proved an α -approximation theorem for Q-manifolds in [8] and an α -approximation theorem for manifolds of dimensions ≥ 5 in a joint work with Chapman [6].

Recently, the author proved in [16] an α -approximation theorem for Q^{∞} -manifolds: "Given an open cover α of a Q^{∞} -manifold N, then there is an open cover β of N such that every β -equivalence from a Q^{∞} -manifold M to N is α -close to a homeomorphism".

It will be shown in this note that such an α -approximation theorem also holds true for \mathbb{R}^{∞} -manifolds. So, the question (NLC 8) in [9] has an affirmative answer.

As in [16], in the process of proving the main theorem, some results similar to a few properties of Z-sets in Q and ℓ_2 -manifold theory will be proved. These include:

(1) relative \mathbb{R}^{∞} -deficient embedding approximation theorem (Theorem 2.3);

(2) unknotting theorem for \mathbb{R}^{∞} -deficient embeddings (Theorem 3.3);

(3) collar theorem (Theorem 4.2); and

(4) \mathbb{R}^{∞} -deficient subsets being strongly negligible (Theorem 5.3).

For standard concepts such as the cone(X) of a topological space X, the mapping cylinder M(f) of a map f, the infinite mapping cylinder $M(f_1, f_2, ...)$ of a sequence of maps $f_i: X_{i-1} \to X_i$, the limitation of a homotopy $H: X \times I \to Y$ by an open cover α of Y, the nth-star Stⁿ(α) of an open cover α , etc., we refer to [8] or [16] for more details. All topological spaces are separable.

Throughout this note, let \mathbb{R}^{∞} be the direct-limit space $\lim_{\to} {\mathbb{R}^n}$

This research is partially supported by Summer Research Grant 1045 of University of Alabama, 1980

Received by the editors on May 28, 1983.

Copyright ©1987 Rocky Mountain Mathematics Consortium