MODULI OF CONTINUITY AND GENERALIZED BCH SETS

ROBERT D. BERMAN, LEON BROWN, * AND WILLIAM S. COHN **

1. Introduction. Let $\Lambda = \{|z| < 1\}$ and $C = \{|z| = 1\}$. For $\omega = \omega_h$, the modulus of continuity of a bounded complex-valued function h on $[0, 2\pi]$, the class of ω -sets is defined to be the subclass of closed sets K of linear measure 0 in C satisfying

(1.1)
$$\sum_{k} \omega(|I_k|) < \infty,$$

where (I_k) is an enumeration of the component arcs of $C \setminus K$ and $|I_k|$ is the length of I_k . When ω is *equivalent* to the modulus of continuity $\nu(t) = t \log(2\pi e/t)$ (that is, $m\omega \leq \nu \leq M\omega$ for some m, M > 0), then (1.1) is referred to as the Carleson condition and the ω -sets are called the BCH (Beurling-Carleson-Hayman) sets.

The BCH sets first arose in the characterization by Beurling [4] and Carleson [5] of the boundary zero sets of the functions in the class Λ_{ω} when $\omega(t) = t^{\alpha}, 0 < \alpha \leq 1$. By definition, Λ_{ω} is the class of continuous functions f on $\overline{\Lambda} = \{|z| \leq 1\}$ that are analytic in Λ and satisfy

$$|f(z) - f(w)| \le c\omega(|z - w|), \quad z, w \in \Lambda,$$

for some c > 0. Recently, Shirokov [15] generalized the result of Beurling and Carleson by characterizing the complete zero sets Z(f)of functions f in Λ_{ω} for arbitrary moduli of continuity ω .

The second and third authors were supported in part by the National Science Foundation.

Received by the editors on November 16, 1984 and in revised form on August 26, 1985.