F-PROJECTORS IN LOCALLY FINITE GROUPS

M. R. DIXON

ABSTRACT. The author discusses the class \mathscr{X} of countable locally finite-solvable groups with min-*p* for all primes *p*. It is shown that if \mathscr{F} is a saturated formation which contains no non co-Hopfian groups then the \mathscr{F} -projectors of a group $G \in \mathscr{X}$ are all conjugate if and only if the group *G* has only countably many such \mathscr{F} -projectors.

1. Introduction. A group G is said to be locally finite-solvable if every finite subset of elements of G is contained in a finite solvable subgroup of G. In this paper we shall be concerned with the class \mathfrak{X} of all countable locally finite-solvable groups with min-p for all primes p, which was first studied in [1]. Here a group G is said to have min-p if every p-subgroup of G has the minimal condition on subgroups. The structure of groups in the class \mathfrak{X} has been well documented in [1], [4] and [6, chapter 3].

In [4] we obtained a theory of saturated formations in the class \mathfrak{X} . For the sake of completeness we now describe this theory. If G is in the class \mathfrak{X} then G will be called an \mathfrak{X} -group. Suppose \mathfrak{Z} is a QS-closed subclass of \mathfrak{X} ; that is every \mathfrak{Z} -group in an \mathfrak{X} -group, and every section of a \mathfrak{Z} -group is a \mathfrak{Z} -group. Let π denote a non-empty set of primes and, for each $p \in \pi$, let f(p) be a subclass of \mathfrak{Z} satisfying

(i)
$$f(p)$$
 is Q-closed

(ii) If $G \in \mathfrak{Z}$ and

 $N = \bigcap \{ C_G(H/K) \mid H/K \text{ is a } p \text{-chief factor of } G \text{ such that} \\ G/C_G(H/K) \in f(p) \}$

then $G/N \in f(p)$.

The saturated \mathfrak{B} -formation defined locally by f is then the class of groups:

$$\mathfrak{F} = \mathfrak{F}(f) = \mathfrak{Z} \cap \mathfrak{S}_{\pi} \cap \bigcap_{p \in \pi} \mathfrak{S}_{p'}, \mathfrak{S}_p f(p),$$

where \mathfrak{S}_{π} denotes the class of locally finite-solvable π -groups. Moreover

Received by the editors on December 10, 1984, and in revised form on May 14, 1985. Copyright © 1987 Rocky Mountain Mathematics Consortium