A SIMPLE CHARACTERIZATION OF THE CONTACT SYSTEM ON J*(E)*

R. B. GARDNER AND W. F. SHADWICK

ABSTRACT. In this note we give an invariant characterization of the contact system of $J^k(E)$ where (E, π, M) is a fibred manifold. This characterization generalizes one given in reference [1] for the case where k = 1. It affords a simple coordinate free proof that a section σ of $(J^k(E), \pi^k_M, M)$ is the k-jet extension of a section of (E, π, M) if σ annihilates the contact system [2].

1. The First order Case. Let (E, π, M) denote a fibred manifold with total space E, projection π and base space M. The k-jet bundle of local sections of (E, π, M) , denoted by $J^k(E)$, has a natural fibred manifold structure over J'(E) for $\prime < k$ and over E and M. The canonical projections π_{ℓ}^k : $J^k(E) \to J'(E), \pi_E^k: J^k(E) \to E$ and $\pi_M^k: J^k(E) \to M$ are given by

 $\pi_F^k: i_r^k s \to s(x)$

(1)

(a) $\pi^k_{\prime}: J^k_x \ s \to J^{\prime}_x \ s$

and

(c) $\pi_M^k = \pi \circ \pi_F^k : j_x^k s \to x$

respectively.

We begin by defining the contact system Ω^1 on $J^1(E)$ as the exterior differential system given pointwise by

(2)
$$\Omega^{1}|_{j_{x}^{1}s} = (\pi_{E}^{1*} - \pi_{M}^{1*}s^{*})T_{s(x)}^{*}E.$$

(b)

It is easy to verify, from (2), that a section σ of $(J^1(E), \pi^1_M, M)$ defined on $U \subset M$, satisfies $\sigma^* Q^1 = 0$ iff $\sigma = j^1 s$ where $s = \pi^1_E \circ \sigma$. To see this, suppose $\sigma = j^1 s$. Then

$$\sigma^* \Omega^1|_{j_x^{1_s}} = j^1 s^* (\pi_E^{1*} - \pi_M^{1*} s^*) T_{s(x)}^* E$$

= $[(\pi_E^1 \circ j^1 s)^* - (s \circ \pi_M^1 \circ j^1 s)^*] T_{s(x)}^* E$
= $[s^* - (s \circ id_U)^*] T_{s(x)}^* E = 0.$

Received by the editors on June 5, 1984.

Copyright © 1987 Rocky Mountain Mathematics Consortium

^{*} Research supported in part by NATO Grant 0546/82 and NSERC Grants T2100 & U0172.