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SUMMING SUBSEQUENCES OF RANDOM VARIABLES

MARK SCHWARTZ

ABSTRACT. Given an increasing sequence N of positive integers
and k = 1, call any one to one correspondence z: N — N* an
ordering (or numbering) of N onto N*, Let (X,) be a sequence of
random variables satisfying sup,E | X, | (log* | X,|)¥* < co. Then
there exists a subsequence N, = (i,) such that, for any further sub-
sequence N, = (i;,) and any ordering 7 satisfying |z(i;)| < j, for
alln 2 1, we have (X,-,) converges Cesaro a.s. for s € N*,

1. Introduction and notation. The theorem of Komlos [2] is a generalized
strong law of large numbers. If (X,)) is an L;-bounded sequence of random
variables, then there exists a subsequence such that every further sub-
sequence converges Cesaro a.s., to the same limit. In this paper, the follow-
ing Komlos-type property is considered. Given a sequence (X,,) satisfying
a certain moment condition, there exists a subsequence (X9) such that any
ordering, to a degree, of any subsequence of (X9) into N* converges Cesaro
a.s. The limit is independent of the particular subsequence of (X9), and
of the ordering. As a corollary (taking £ = 1), to a large degree, per-
mutations of the Komlos subsequences converge Cesaro a.s.

This latter result cannot be obtained from Komlos’s proof, which uses
martingale difference sequences. The method used here is patterned after
Etemadi’s [1] proof of the strong law of large numbers for pairwise in-
dependent, identically distributed random variables. Despite the fact that
we begin with a sequence (X ,) rather than an array, the moment condition
must be stronger than L;-bounded to obtain the result; we suppose
sup,E|X,|(log*|X,|)*1 < oo. This condition is not always necessary, but
Smythe [4] has shown that if E|X,|(log*|X,])*"! = oo, then the strong law
of large numbers fails to hold for a k-dimensional array of i.i.d. random
variables. Consequently, a multiparameter Komlo6s-type theorem cannot
hold in general if (X,,) is only L;-bounded.

In the following, let (X,,) be a sequence of random variables on a prob-
ability space (2,%, P). For k = 1, we consider N*¥ with the coordinate-
wise partial ordering <. For s = (s1, ..., 5,) € N*¥ denote |s| = 57 - ...

- 5. Ifj 2 1, let d; = card{s € N#: |s| = j}, the number of ways of writing
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