A REMARK ON THE ENERGY OF HARMONIC MAPS BETWEEN SPHERES

JAYAKUMAR RAMANATHAN

1. Introduction. A harmonic map between two Riemannian manifolds is a critical point of the energy integral. The conformal invariance of this integral in two dimensions makes this variational problem especially tractable. A fact that is special to two dimensions is that a harmonic map $\phi \colon S^2 \to S^2$ is energy minimizing among all C^2 maps homotopic to ϕ . Furthermore, it is well known that the energy of a harmonic map $\phi \colon S^2 \to S^2$ is given by

(1)
$$E(\phi) = \frac{1}{2} \int_{S^2} |d\phi|^2 dv = |\deg \phi| \text{vol}(S^2).$$

In contrast to the two dimensional situation, Eells and Sampson [2] showed that any differentiable map $\phi: S^n \to S^n$ ($n \ge 3$) of nonzero degree does not minimize energy within its homotopy class. It is then natural to ask if there exist stable, harmonic maps $\phi: S^n \to S^n$ when $n \ge 3$. This question was answered in the negative by Y.L. Xin [5] who proved the following more general theorem.

THEOREM. (XIN). If $n \ge 3$, there exists no nonconstant, stable harmonic map from S^n to any Riemannian manifold.

Xin proved this result by computing the second variation of the energy along the conformal vector fields of S^n . A conformal vector field on S^n is of the form $\nu = \operatorname{grad}(\lambda|_{S^n})$, where λ is a linear functional on \mathbb{R}^{n+1} . Let $\phi_t \colon S^n \to M$ be a one parameter variation of a harmonic map $\phi = \phi_0$ such that

(2)
$$\frac{d\phi_t}{dt}\Big|_{t=0} = \phi_*(\nu),$$

where ν is a conformal vector field on S^n . Xin proves

This work was supported in part by N.S.F. Grant DMS 8401930. Received by the editors on February 18, 1985.