BOUNDEDNESS FOR BLOCH FUNCTIONS

R.C. GOOLSBY

ABSTRACT. Two theorems concerning the boundedness for certain functions in the Bergman space for the unit disc are proven. Theorem 1. If f is in the Bergman space so that $|f(z)| \leq m$ for all z in the crescent region bounded by |z| < 1 and |z-x| < 1-x, $0 < x \leq 1/2$, then $|f(z)| \leq m$ for all z in the unit disc. Theorem 2. If f is a Bloch function so that $\limsup_{z \to a} |f(z)| \leq m$ for all but a finite number of a's in the boundary of the unit disc, then f(z) is bounded on the unit disc.

Introduction. The Bergman *p*-space for the open unit disc Δ is the closure of the analytic functions in $L^p(\Delta, dA)$ where dA is area measure. In this paper the relationships between integrability and boundedness on Δ will be investigated. Let $A_p(\Delta)$ denote the Bergman *p*-space, $p \ge 1$.

It is clear (maximum modulus theorem) that if $f \in A_1(\Delta)$ and f is bounded on the annular region bounded by |z| = 1 and |z| = r, r < 1, then f is bounded on Δ . However, for $f \in A_1(\Delta)$ and f bounded on the open crescent region bounded by |z| = 1 and |z - x| = 1 - x for $0 < x \le 1/2$, it is not clear that f(z) is bounded on Δ . This will be shown to be true as a corollary of a stronger result for crescent regions.

This result represents the interplay between the maximum modulus theorem and integrability. It is conjectured by the author that if $f \in A_1(\Delta)$ and $\limsup_{z \to a} |f(z)| < M$ for all but a finite number of points $a \in \partial \Delta$, then f is bounded. This conjecture will be shown to be true for the space of Bloch functions for Δ .

Notations & Definitions. Throughout this paper Δ will be used for the open unit disc and G will be the crescent region bounded by |z| = 1 and |z - x| = 1 - x where $0 \le x \le 1/2$. Let $U = \Delta/\overline{G}$. Then ∂U is parametrized by $\Gamma(\theta) = x + (1 - x)e^{i\theta}$ where $0 \le \theta < 2\pi$. The closure of the analytic polynomials in the Bergman *p*-space for G will be denoted by $H_p(G)$. The standard Hardy *p*-space for the unit circle will be given by $H_p(\partial \Delta)$.

Secondary Classification: 30D50.

Received by the editors on January 14, 1985, and in revised form on April 16, 1985. *Primary Subject Classification*: 30C80, 30D60.

Key Words and Phrases: Bergman Space, Bloch function, Normal function.

Copyright © 1986 Rocky Mountain Mathematics Consortium