A COMPLETE CHARACTERIZATION OF THE LEVEL SPACES OF R (I) AND I (I)

R. LOWEN

ABSTRACT. By means of T_0 -modifications we are able to precisely describe all level spaces of **R** (I) and I (I) and to show that there are only 3 nonhomeomorphic level spaces of **R** (I) and only 4 nonhomeomorphic level spaces of I (I). A large list of α -properties of both **R**(I) and I (I) is deduced, and an open problem with regard to α -compactness is solved.

1. Preliminaries. I denotes the unit interval and $I_1 = [0, 1[$. If X is a topological space and $x \in X$ we denote its neighborhoodfilter $\mathcal{N}(x)$.

We recall that a topological space is called hyperconnected (resp. ultraconnected) if no disjoint open (resp. closed) sets exist [12].

If \mathscr{B} is a filterbase then the generated filter is denoted $[\mathscr{B}]$. If (X, Δ) is a fuzzy topological space then for any $\alpha \in I_1$ the α -level space, denoted $\iota_{\alpha}(X)$, is the topological space $(X, \iota_{\alpha}(\Delta))$ where $\iota_{\alpha}(\Delta) = \{\mu^{-1} \mid \alpha, 1\} \mid \mu \in \Delta\}$ (see [5], [6]). We use the simplified version of **R** (I) and I (I) introduced in [7]. That means that throughout this paper **R** (I) is the set of all non-increasing left continuous maps from **R** to I with supremum equal 1 and infimum equal 0.

The fuzzy topology considered on this set is determined by the subbasis $\{L_x, R_y \mid x, y \in \mathbf{R}\}$ where L_x and R_y are defined as

$$L_{x}(\lambda) = 1 - \lambda(x)$$
$$R_{y}(\lambda) = \lambda(y+)$$

for any $\lambda \in \mathbf{R}$ (*L*).

We also recall that I(I) is the subspace of $\mathbf{R}(I)$ defined by $\mu \in I(I)$ if and only if $\mu(0) = 1$ and $\mu(t) = 0$ for all t > 1. For more information on these spaces see [1], [2], [3], [7], [9] and [10]. In [10] the numbers $a(\mu, \alpha), b(\mu, \alpha), a^*(\mu, \alpha), b^*(\mu, \alpha)$ for any $\mu \in \mathbf{R}(I)$ and $\alpha \in I$ were introduced. In [7] we showed the following proposition which we require in the sequel.

PROPOSITION 1.1. For any $\mu \in \mathbf{R}$ (I) and $\alpha \in I$ (i) $a(\mu, \alpha) = \inf \mu^{-1}[0, 1 - \alpha],$

Received by the editors on January 14, 1982, and in revised form on January 31, 1985 Copyright © 1986 Rocky Mountain Mathematics Consortium