A COMPLETE CHARACTERIZATION OF THE LEVEL SPACES OF R (I) AND I (I)

R. LOWEN

Abstract

By means of T_{0}-modifications we are able to precisely describe all level spaces of $\mathbf{R}(I)$ and $I(I)$ and to show that there are only 3 nonhomeomorphic level spaces of $\mathbf{R}(I)$ and only 4 nonhomeomorphic level spaces of $I(I)$. A large list of α-properties of both $\mathbf{R}(I)$ and $I(I)$ is deduced, and an open problem with regard to α-compactness is solved.

1. Preliminaries. I denotes the unit interval and $I_{1}=[0,1[$. If X is a topological space and $x \in X$ we denote its neighborhoodfilter $\mathscr{N}(x)$.

We recall that a topological space is called hyperconnected (resp. ultraconnected) if no disjoint open (resp. closed) sets exist [12].

If \mathscr{B} is a filterbase then the generated filter is denoted [\mathscr{B}]. If (X, Δ) is a fuzzy topological space then for any $\alpha \in I_{1}$ the α-level space, denoted $\iota_{\alpha}(X)$, is the topological space $\left(X, \iota_{\alpha}(\Delta)\right)$ where $\left.\iota_{\alpha}(\Delta)=\left\{\mu^{-1}\right] \alpha, 1\right] \mid \mu$ $\in \Delta\}$ (see [5], [6]). We use the simplified version of $\mathbf{R}(I)$ and I (I) introduced in [7]. That means that throughout this paper $\mathbf{R}(I)$ is the set of all non-increasing left continuous maps from \mathbf{R} to I with supremum equal 1 and infimum equal 0 .

The fuzzy topology considered on this set is determined by the subbasis $\left\{L_{x}, R_{y} \mid x, y \in \mathbf{R}\right\}$ where L_{x} and R_{y} are defined as

$$
\begin{aligned}
& L_{x}(\lambda)=1-\lambda(x) \\
& R_{y}(\lambda)=\lambda(y+)
\end{aligned}
$$

for any $\lambda \in \mathbf{R}(L)$.
We also recall that $I(I)$ is the subspace of $\mathbf{R}(I)$ defined by $\mu \in I(I)$ if and only if $\mu(0)=1$ and $\mu(t)=0$ for all $t>1$. For more information on these spaces see [1], [2], [3], [7], [9] and [10]. In [10] the numbers $a(\mu, \alpha), b(\mu, \alpha), a^{*}(\mu, \alpha), b^{*}(\mu, \alpha)$ for any $\mu \in \mathbf{R}(I)$ and $\alpha \in I$ were introduced. In [7] we showed the following proposition which we require in the sequel.

Proposition 1.1. For any $\mu \in \mathbf{R}$ (I) and $\alpha \in I$
(i) $a(\mu, \alpha)=\inf \mu^{-1}[0,1-\alpha[$,

Received by the editors on January 14, 1982, and in revised form on January 31, 1985

