ON THE NUMBER OF MINIMAL PRIME IDEALS IN THE COMPLETION OF A LOCAL DOMAIN

DANIEL KATZ

Let R be a local Noetherian domain. It is well-known that the number of minimal prime ideals in the completion of R is greater than or equal to the number of maximal ideals in the integral closure of R. An (unproved) exercise in [2] states that the reverse inequality holds if R is one-dimensional. The purpose of this note is to show how this latter fact can be generalized to local domains of dimension greater than one. Specifically, let x_{1}, \ldots, x_{d} be a system of parameters for R and set

$$
T=R\left[\frac{x_{2}}{x_{1}}, \cdots, \frac{x_{d}}{x_{1}}\right]_{M R\left[\frac{x_{2}}{x_{1}}, \cdots, \frac{x_{d}}{x_{1}}\right]}
$$

(M is the maximal ideal of R). We will show that if R is quasi-unmixed, then the number of maximal ideals in the integral closure of T is greater than or equal to the number of minimal prime ideals in the completion of R. As a corollary we deduce a criterion for local domains to be analytically irreducible and we close with a bound for the number of minimal prime ideals in the completion of R in the non-quasi-unmixed case.

Notation. Throughout, (R, M) will denote a local Noetherian ring with maximal ideal M. We will use "--" to denote integral closure-both for rings and ideals. Recall that for an ideal $I \subseteq R, \bar{I}$, the integral closure of I, is the set of elements $x \in R$ satisfying an equation of the form

$$
x^{n}+i_{1} x^{n-1}+\cdots+i_{n}=0, \quad i_{k} \in I^{k}, 1 \leqq k \leqq n .
$$

It is well-known that \bar{I} is an ideal of R contained in the radical of I. We will use "*" to denote the completion of a local ring. Recall that a local ring R is quasi-unmixed in case $\operatorname{dim} R^{*} / p^{*}=\operatorname{dim} R$, for all minimal primes $p^{*} \subseteq R^{*}$. Any other standard facts or terminology from local ring theory appear here as they do in [2].

Remark. Lemmas 1 and 2 below are more or less well-known, but we have included their easy proofs for the sake of exposition.

Lemma 1. (c.f. [6, p. 354]): Let R be a Noetherian domain and $I \subseteq R$

