FREQUENCY OF COPRIMALITY OF THE VALUES OF A POLYNOMIAL AND A PRIME-INDEPENDENT MULTIPLICATIVE FUNCTION*

CLAUDIA SPIRO

1. Introduction. Let H, J, and n denote positive integers, take P to be a polynomial with integer coefficients, and assume that M is a nonzero integer-valued multiplicative function such that

$$
\begin{equation*}
M(p)=H, \quad M\left(p^{2}\right)=J \tag{1}
\end{equation*}
$$

for every prime p. In 1976, E. J. Scourfield [4] obtained the estimate

$$
\begin{equation*}
\#\{n \leqq x:(M(n), n)=1\} \sim c_{M} x \tag{2}
\end{equation*}
$$

as x tends to ∞. She obtained equally precise results for elements of the class of "polynomial-like" arithmetic functions-a class which includes ϕ and σ. Five years later, in the Ph.D. dissertation of the author [6, §3.4], we obtained an estimate for the left side of (2) which is more precise, if a certain convergence condition is satisfied. For example, we showed that

$$
\begin{equation*}
\#\{n \leqq x:(d(n), n)=1\}=c_{d} x+0\left(\sqrt{x}(\log x)^{3}\right) \tag{3}
\end{equation*}
$$

where $d(n)$ is the number of positive integers dividing n, and c_{d} is a computable constant with $0<c_{d}<1$. In this paper, we derive the following estimate for $\#\{n \leqq x:(M(n), P(n))=1\}$.

Theorem 1. $\#\{n \leqq x:(P(n), M(n))=1\}=C_{M, P} x+0\left(\sqrt{x}(\log x)^{2 J}\right.$ $E(x, M)$), where

$$
C_{M, P}=\frac{6}{\pi^{2} H} \sum_{t=1}^{\infty} \frac{1}{t U} \prod_{p \mid t U}\left(1-p^{-2}\right)^{-1} \sum_{\substack{\text { biod } \\(P(b t), U)=(b, U, t)=1 \\ \mu(q, U)) \neq 0}} \prod_{\substack{p \mid t(b, U) \\ p, U Y(b, U)}}\left(1-p^{-1}\right),
$$

where $U=H M(t)$, and

$$
E(x, M)=\sum_{\substack{t \leq x \\ t \text { cubefull }}} 2^{\omega(t)}|M(t)| t^{-1 / 2}
$$

If $E(\infty, M)$ converges, then $E(x, M)$ can be omitted from the error term. As a special case of this result, we show that

[^0]
[^0]: * Partially supported by grant 0379-01-150-81-0 from the Research Foundation of the State University of New York.

 Received by the editors on March 28, 1983 and in revised form on October 22, 1984. Copyright © 1986 Rocky Mountain Mathematics Consortium

