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REFLECTION GROUPS AND MULTIPLICATIVE INVARIANTS 

DANIEL R. FARKAS* 

Introduction. Given a lattice M (i.e., a finitely generated torsion free 
abelian group), one can form the group algebra C[M]. The operation for 
M, usually thought of as addition, must then be regarded as multiplica
tion. An automorphism of M extends to an algebra automorphism of 
C[M] in a unique way. We refer to GL(M) as inducing a "multiplicative 
action" on C[M]. 

The semi-expository paper [2] is devoted to such actions. One of the 
theorems proved there was a multiplicative analogue of the Shephard-
Todd-Chevalley Theorem. 

THEOREM. Assume M is a lattice and G is a finite subgroup of GL(M). 
Then the fixed ring C[M]G is a polynomial ring over C if and only if G is a 
reflection group and, for some choice of root system, M is isomorphic as a 
module to a weight lattice over its Weyl group G. 

Subsequently, I was led to a paper of Steinberg [6] in which a related 
theorem appears. Indeed, it is fair to say that the theorem above is im
plicit in Steinberg's work. Apparently, it has been valuable, for general 
ring theorists, to bring the invariant theoretic statement into relief. My 
arguments are naive in the sense that they use no algebraic geometry and 
employ only the rudiments of root systems. 

This note is an elaboration of the second half of [2]. The theorem stated 
above says that, even for reflection groups, it is rare that the fixed ring of 
the group algebra is a polynomial ring. This distinction among G-module 
structures for M disappears once we pass to the rational function field of 
fractions C(M). 

THEOREM 10. Assume M is a lattice and G c GL(M) is a finite reflection 
group. Then C(M)G is always a rational function field. 

The same techniques prove a generalization of the invariant theorem. 

COROLLARY 13. Assume M is a lattice and G c GL{M) is a finite re-
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