A Q-ANALOGUE OF APPELL'S F_{1} FUNCTION AND SOME QUADRATIC TRANSFORMATION FORMULAS FOR NON-TERMINATING BASIC HYPERGEOMETRIC SERIES

B. NASSRALLAH AND MIZAN RAHMAN*

Abstract

A q-analogue of the integral representation of Appell's F_{1} function is given as an extension of Askey and Wilson's q beta integral and is evaluated as a sum of three very well-poised ${ }_{10} \phi_{9}$ series. The formula is then applied to find two different types of quadratic transformation formulas between very well-poised ${ }_{10} \phi_{9}$ series and balanced ${ }_{5} \phi_{4}$ series. Special cases of balanced and very well-poised ${ }_{10} \phi_{9}$ series are also examined.

1. Introduction. The Appell function F_{1} is defined by the double infinite series [7, p. 224]

$$
\begin{equation*}
F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma ; x, y\right)=\sum_{m} \sum_{n} \frac{(\alpha)_{m+n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m+n}} x^{m} y^{n} \tag{1.1}
\end{equation*}
$$

subject to usual convergence restrictions, where the shifted factorials are defined by $(a)_{0}=1,(a)_{m}=a(a+1) \cdots(a+m-1), m=1,2, \ldots$ Of all the Appell functions this is the only one that has a representation in terms of a single integral [7, p. 231]

$$
F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma ; x, y\right)
$$

$$
\begin{equation*}
=\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma-\alpha)} \int_{0}^{1} t^{\alpha-1}(1-t)^{\gamma-\alpha-1}(1-x t)^{-\beta}(1-y t)^{-\beta^{\prime}} d t \tag{1.2}
\end{equation*}
$$

where $0<\operatorname{Re} \alpha<\operatorname{Re} \gamma$. Using the q-beta type integral of Askey and Wilson [3] the authors [8] recently found the following q-analogue of Euler's integral representation of Gauss' hypergeometric series ${ }_{2} F_{1}$
${ }_{8} \phi_{7}\left[\begin{array}{c}\lambda a b c q^{-1}, q \sqrt{ }- \\ \sqrt{-}-q \sqrt{ }-b c, a c, a b, \lambda d^{-1}, \lambda f^{-1} \\ \sqrt{ }-\sqrt{ }-\lambda a, \lambda b, \lambda c, a b c d, a b c f\end{array}\right]$

$$
\begin{align*}
= & \frac{(q, a b, a c, a d, a f, b c, b d, b f, c d, c f, \lambda a b c ; q)_{\infty}}{2 \pi(\lambda a, \lambda b, \lambda c, a b c d, a b c f ; q)_{\infty}} \tag{1.3}\\
& \cdot \int_{-1}^{1} w(z ; a, b, c, d) \frac{h(z ; \lambda)}{h(z ; f)} d z
\end{align*}
$$

[^0]
[^0]: * This work was supported by NSERC (Canada) under grant A6197.

 Received by the editors on May 28, 1984

