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I. Introduction. In this paper we study the system 

(1.1) u' = F(u\ 

where F:U -> R2, U e R2 is open, 0 e U and F(0) = 0. We assume that 
Fis C1 and that the origin is a center of (1.1). 

Let v(t) be a non-constant /"-periodic solution of (1.1) and consider the 
corresponding linear variational equation 

(1.2) y = Fu(v(t))y. 

DEFINITION 1.1. We say that v is degenerate if and only if every solution 
of the corresponding linear variational equation (1.2) is T-periodic. 

Since y = v(t) is a ^-periodic solution of (1.2) we have that v will be 
degenerate if and only if there exists a T-periodic solution of (1.2) that 
is linearly independent of v (t). 

DEFINITION 1.2. We say that (1.1) is degenerate in a neighborhood of 
0, or simply degenerate, if and only if every non-constant periodic solution 
in this neighborhood is degenerate. 

DISCUSSION. We will see that (1.1) is non-degenerate if and only if the 
periodic solutions in a neighborhood of 0 have distinct minimum periods, 
for example, as a function of the maximum amplitude of the solution. 
Thus, this concept is a generalization of the idea of "hard" and "soft" 
springs for the equation of a nonlinear spring x" + g(x) = 0. Although 
this idea is interesting in its own right, it also has important applications 
in the study of 

(1.3) x' = F(x) + eg(t, x), 

where g is ^-periodic in t. For example, if (1.1) is Hamiltonian and non-
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