CONNECTEDNESS PROPERTIES OF SUPPORT POINTS OF CONVEX SETS

GEORGE LUNA

Abstract. It is shown that the set of support points of certain convex subsets of a Banach space is $\mathscr{C}{ }^{\infty}$.

Let E be a real Banach space and E^{*} its continuous dual. The natural pairing between these spaces will be denoted by $\left\langle x, x^{*}\right\rangle$ for $x \in E$ and $x^{*} \in E^{*}$. If $C \subseteq E$, we will write $M\left(x^{*}, C\right)$ in place of $\sup \left\{\left\langle x, x^{*}\right\rangle: x \in\right.$ $C\}$. The set of support points of C (written: supp C) is the collection of points $x \in C$ for which there exists $x^{*} \in E^{*} \backslash\{0\}$ such that

$$
\left\langle x, x^{*}\right\rangle=M\left(x^{*}, C\right)
$$

The set C is boundedly (weakly) compact if $C \cap B$ is (weakly) compact for each closed ball in E.

A space Y is said to be k-connected, if it is homotopically trivial over the k-dimensional sphere S^{k}. If Y is k-connected, for each $k=0, \ldots, n$, then Y is said to be \mathscr{C}^{n}. An example, the n-dimensional Euclidean sphere S^{n} is \mathscr{C}^{n-1} but not \mathscr{C}^{n}. A space is said to be \mathscr{C}^{∞} if it is \mathscr{C}^{n} for every n.

If C is a closed convex subset of E, then supp C is known to be a norm dense F_{σ} subset of the boundary of C (written as bdry C). It is also known [4] that if C contains no hyperplane and is boundedly weakly compact, then supp C is connected.

We show here, that under these same assumptions, supp C is actually arcwise connected. In addition, we show that if C contains no linear variety of finite codimension, then supp C is \mathscr{C}^{∞}. We also show that if C is boundedly compact, then supp C is contractible.

If $a \in C$, we will use the notation C_{a} for the union of all open halfspaces not containing C and which are determined by support functionals at a; that is

$$
C_{a}=\bigcup\left\{\left(x^{*}>\left\langle a, x^{*}\right\rangle\right): x^{*} \neq 0,\left\langle a, x^{*}\right\rangle=M\left(x^{*}, C\right)\right\},
$$

where $\left.\left(x^{*}\right\rangle\left\langle a, x^{*}\right\rangle\right)=\left\{x \in E:\left\langle x, x^{*}\right\rangle>\left\langle a, x^{*}\right\rangle\right\}$.
We also use the notation X_{a} for the set $a+\cup\{n(C-a): n \in N\}$, and (x, y) for the open line segment $\{\lambda x+(1-\lambda) y: 0<\lambda<1\}$.

