p-VALENT CLASSES RELATED TO CONVEX FUNCTIONS OF COMPLEX ORDER

M. K. AOUF

ABSTRACT. Let C(b, p) $(b \neq 0 \text{ complex}, p \ge 1)$ denote the class of functions $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ analytic in $U = \{z : |z| < 1\}$ which satisfy, for $z = re^{i\theta} \in U$,

$$\operatorname{Re}\left\{p+\frac{1}{b}\left(1+\frac{zf''(z)}{f'(z)}-p\right)\right\}>0.$$

From C(b, p), we can obtain many interesting known subclasses including the class of convex functions of complex order, the class of *p*-valent convex functions and the class of *p*-valent functions *f* for which zf' is λ -spirallike in *U*. In this paper we investigate certain properties of the above mentioned class.

1. Introduction. Let $A_p(p \ge 1)$ denote the class of functions $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ which are analytic in $U = \{z : |z| < 1\}$. Let \mathcal{Q} denote the class of bounded analytic functions $\omega(z)$ in U, satisfying the conditions $\omega(o) = o$ and $|\omega(z)| \le |z|$, for $z \in U$. Also, let P(p) (with p a positive integer) denote the class of functions with positive real parts that have the form $P(z) = p + \sum_{k=1}^{\infty} c_k z^k$, which are analytic in U and satisfy the conditions P(o) = p and Re $\{P(z)\} > o$ in U.

For $f \in A_p$, we say that f belongs to the class C(b, p) ($b \neq 0$ complex, $p \ge 1$) if

(1.1)
$$\operatorname{Re}\left\{p + \frac{1}{b}\left(1 + \frac{zf''(z)}{f'(z)} - p\right)\right\} > 0, \quad z \in U.$$

It is noticed that, by giving specific values to b and p, we obtain the following important subclasses studied by various authors in earlier works:

(i) C(1, 1) = C is the well known class of convex functions;

(ii) C(b, 1) = C(b), is the class of univalent convex functions introduced by Wiatrowski [11] and investigated in [8] and [9];

(iii) C(1, p) = C(p), is the class of *p*-valent convex functions considered by Goodman [3];

Received by the editors on November 18, 1983 and in revised form on February 21, 1984.