ON A THEOREM OF BERNSTEIN

M. A. MALIK

1. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n and $P^{\prime}(z)$ denote its derivative. Concerning the estimate of $\left|P^{\prime}(z)\right|$ the following result is well known:

Theorem a. If $P(z)$ is a polynomial of degree n and $\max _{|z|=1}|P(z)|=1$ then for $|z| \leqq 1$

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leqq n \tag{1}
\end{equation*}
$$

There is equality in (1) if and only if $P(z) \equiv \alpha z^{n},|\alpha|=1$.
Theorem A is known as Bernstein's Theorem. It can be deduced from a result (also known as Bernstein's Theorem) on the derivative of a trigonometric polynomial which can be proved following an interpolation formula obtained by M. Riesz [3]; from where it is also verified that equality in (1) holds only if $P(z) \equiv \alpha z^{n},|\alpha|=1$. In [1], S. Bernstein proved the following generalization of Theorem A by the use of GaussLucas Theorem; see also N. G. De Bruijn [2]:

Theorem B. Let $P(z)$ and $Q(z)$ be polynomials satisfying the conditions that $Q(z)$ has all its zeros in $|z| \leqq 1$ and the degree of $P(z)$ does not exceed that of $Q(z)$. If

$$
\begin{equation*}
|P(z)| \leqq|Q(z)| \quad \text { on } \quad|z|=1 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leqq\left|Q^{\prime}(z)\right| \quad \text { on } \quad|z|=1 \tag{3}
\end{equation*}
$$

2. In this paper, we study the case when there is equality in (3). In fact, we prove:

Theorem 1. Let the hypothesis of Theorem B be satisfied. If there is equality in (3) at any point μ on $|z|=1$ where $Q(\mu) \neq 0$ then $P(z) \equiv$ $\alpha Q(z),|\alpha|=1$.

[^0]
[^0]: Research supported by NSERC, Canada.
 1980 subject classification 30A10; 30C10.
 Keywords: Polynomials, derivative, inequality, etc.
 Received by the editors on March 211984.

