ON THE DIOPHANTINE EQUATION $1+\mathbf{p}^{a}=2^{b}+2^{c} \mathbf{p}^{d}$

LEO J. ALEX AND LORRAINE L. FOSTER

Abstract

In this paper the exponential Diophantine equation $1+p^{a}=2^{b}+2^{c} p^{d}$, where a, b, c, d are non-negative integers and p is an odd prime, is studied. All solutions to the equation are found for which $p \leqq 499$. This work extends earlier work of the authors and J. L. Brenner.

1. Introduction. In this paper we consider the equation

$$
\begin{equation*}
1+p^{a}=2^{b}+2^{c} p^{d} \tag{1}
\end{equation*}
$$

where p is an odd prime and a, b, c and d are non-negative integers. This equation is of the form

$$
\begin{equation*}
1+x=y+z \tag{2}
\end{equation*}
$$

or, more generally,

$$
\begin{equation*}
\sum X_{i}=0 \tag{3}
\end{equation*}
$$

where the primes dividing $x y z$ in (2) and ΠX_{i} in (3) are specified.
There has been very little work done in general to solve such Diophantine equations. For example the equation

$$
\begin{equation*}
1+2^{a} 3^{b}=5^{c}+2^{d} 3^{e} 5^{f} \tag{4}
\end{equation*}
$$

is unsolved. Some of these equations have an infinite number of trivial solutions. (For example the equation (4) above has infinitely many solutions of the form $c=f=0, a=d$, and $b=e$.) It is unknown whether such equations always have only a finite number of non-trivial solutions.

It follows from work of Dubois and Rhin [6] and Schlickewei [7] that the related equation $p^{a} \pm q^{b} \pm r^{c} \pm s^{d}=0$ has only finitely many solutions when p, q, r and s are distinct primes. However, their methods do not seem to apply when the terms in the equation are not powers of distinct primes.

The authors and J. L. Brenner [1], [2], [4], [5] have recently developed techniques which solve such equations in some cases. These techniques

