THE COEFFICIENTS OF THE INVERSE OF AN ODD CONVEX FUNCTION

RICHARD J. LIBERA AND ELIGIUSZ J. Z\&OTKIEWICZ

1. Background information. \mathscr{P} is the class of functions regular and with positive real part in the open unit disk $J, J=\{z \in \mathbf{C}:|z|<1\}$, having a series representation

$$
\begin{equation*}
\left.P(z)=1+c_{1} z+c_{2} z^{2}+\ldots, \quad z \in\right\lrcorner \tag{1.2}
\end{equation*}
$$

The family \mathscr{K}^{\prime} of regular convex functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.3}
\end{equation*}
$$

is defined by the condition

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1 \in \mathscr{P} \tag{1.4}
\end{equation*}
$$

(see [4], for example).
In recent years the peculiar behavior of the coefficients of inverses of functions in \mathscr{K} and in similar classes has attracted attention [1, 2, 7, $\mathbf{8}, \mathbf{1 0}, \mathbf{1 1}]$. If the inverse of $f(z)$ in \mathscr{K} is

$$
\begin{equation*}
\check{f}(w)=w+A_{2} w^{2}+A_{3} w^{3} \cdots \tag{1.5}
\end{equation*}
$$

then it has been shown $([\mathbf{1}, \mathbf{1 0}])$ that $\left|A_{k}\right| \leqq 1, k=2,3, \ldots, 8$, but that there are members of \mathscr{K} for which $\left|A_{10}\right|>1$, [7]. The exact bound for $\left|A_{9}\right|$ appears to be unknown at this time.

The purpose of the present work is to examine the coefficients of (1.5) when $f(z)$ is an odd function in \mathscr{K}. Suppose then that

$$
\begin{equation*}
f(z)=z+b_{3} z^{3}+b_{5} z^{5}+\cdots \tag{1.6}
\end{equation*}
$$

is an odd member of \mathscr{K}. Then its inverse

$$
\begin{equation*}
\check{f}(w)=w+B_{3} w^{3}+B_{5} w^{5}+\cdots \tag{1.7}
\end{equation*}
$$

is likewise odd. In this case we may write (1.4) as

[^0]
[^0]: Received by the editors on November 8, 1983 and in revised form on February 17. 1984.

