TOMOGRAPHIC RECONSTRUCTION OF FUNCTIONS FROM THEIR SINGULARITIES

JAMES V. PETERS

The general problem of reconstructive tomography is to determine a density function f(x), defined on \mathbb{R}^n , from its integrals on lower dimensional manifolds of some fixed dimension. Integrating f over hyperplanes has received considerable attention due to its relation to x-ray scanning in \mathbb{R}^2 and nuclear magnetic resonance scanning in \mathbb{R}^3 [4, 6]. This leads to the consideration of the Radon transform of f, defined on $S^{n-1} \times \mathbb{R}^1$, by

(1)
$$\hat{f}(\theta, p) = \int_{\mathbf{R}^n} f(x) \,\delta(p - \langle \theta, x \rangle) dx.$$

Here, δ denotes the Dirac delta mass and $\langle \cdot, \cdot \rangle$ is the usual inner product. Thus, \hat{f} is the integral of f over the hyperplane $\{x | \langle \theta, x \rangle = p\}$. It will be assumed throughout that the density function f(x) is absolutely summable and compactly supported. This implies that, for each $\theta \in S^{n-1}$, \hat{f} is defined for almost every p. Further, \hat{f} is compactly supported on $S^{n-1} \times \mathbb{R}^1$.

Related to \hat{f} is the so-called back projection \check{f} . This is defined on \mathbb{R}^n by

(2)
$$\check{f}(x) = \int_{S^{n-1}} \hat{f}(\theta, \langle \theta, x \rangle d\theta.$$

The function \check{f} is directly related to f by the singular integral

(3)
$$\check{f}(x) = \Omega_{n-1} \int_{\mathbf{R}^n} \frac{f(y)}{\|x - y\|} dy,$$

where Ω_n denotes the surface area of the unit sphere in \mathbb{R}^n . The value of Ω_n may be computed from the identity $\Omega_n = 2\pi^{n/2}/\Gamma(n/2)$, where Γ denotes the gamma function. It follows directly from (3) that \check{f} is continuous whenever f is. By (1), the same implication also holds between \hat{f} and f. Since identical results hold for the order of differentiability, it is quite often assumed in the literature that f is sufficiently smooth to justify inversion formulas such as those given in [5].

The point of view adopted in this paper is that physical densities have

Received by the editors on February 14, 1983 and in revised form on December 12, 1983.