SOME ANALOGUES OF A LEHMER PROBLEM ON THE TOTIENT FUNCTION

M. V. SUBBARAO AND V. SIVA RAMA PRASAD

1. Introduction and notation. In 1932, Lehmer [9] considered the equation

$$
\begin{equation*}
M \phi(n)=n-1 \tag{1.1}
\end{equation*}
$$

where $\phi(n)$ is the Euler totient function and asked whether the sets S_{M} of integers n satisfying (1.1) have any composite numbers. Obviously in the case $M=1$, the answer is negative. But the problem is not settled for $M>1$. However, the following partial solutions are known in the latter case. Firstly, Lehmer himself proved that each member of S_{M} is odd, squarefree and has at least seven distinct prime factors. Later Lieuwens [10], correcting the proof of Schuh [13], showed that $\omega(n) \geqq 11$ for every $n \in S_{M}$, where $\omega(n)$ denotes the number of distinct prime factors of n. Kishore [7] increased the lower bound of $\omega(n)$ to 13. Recently, Cohen and Hagis [2], using computational methods, established that $\omega(n) \geqq 14$. In another direction, Pomerance [12] proved that every such n is $<r^{2^{r}}$, where $r=\omega(n)$, and obtained that the number of $n \leqq x$ in any of S_{M} with $M>1$ is

$$
O\left(x^{1 / 2} \log ^{3 / 4} x \cdot(\log \log x)^{-1 / 2}\right)
$$

In this paper we discuss two analogous problems involving $J_{k}(n)$, the Jordan totient function of order k and $\phi^{*}(n)$, the unitary analogue of the Euler totient function. It is well-known that they are given by $J_{k}(1)=1$, $\phi^{*}(1)=1$, and if $n>1$,

$$
\begin{gather*}
J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right), \tag{1.2}\\
\phi^{*}(n)=\prod_{p^{\alpha| | n}}\left(p^{\alpha}-1\right), \tag{1.3}
\end{gather*}
$$

where the product in (1.2) is over prime divisors of n and that in (1.3) is

[^0]
[^0]: Received by the editors December 15, 1983.
 Partially supported by NSERC Grant No. A-3103.

