ON THE GREATEST PRIME FACTOR OF TERMS OF A LINEAR RECURRENCE SEQUENCE

C.L. STEWART

In memory of R.A. Smith and E.G. Straus

The purpose of this note is to survey the results which have been obtained concerning the greatest prime factor and also the greatest squarefree factor of terms of linear recurrence sequences. We shall first discuss the results which apply to general linear recurrence sequences. Next we shall consider binary recurrence sequences and finally, Lucas and Lehmer sequences.

For any integer n, let $P(n)$ denote the greatest prime factor of n with the convention that $P(0)=P(\pm 1)=1$. Further, let $Q(n)$ denote the greatest square-free factor of n with the convention that $Q(0)=Q(\pm 1)=1$. Thus, if $n=p_{1}^{h_{1}} \cdots p_{r}^{h_{r}}$ with p_{1}, \ldots, p_{r} distinct primes and h_{1}, \ldots, h_{r} positive integers, then $Q(n)=p_{1} \cdots p_{r}$.

Let r_{1}, \ldots, r_{k} and u_{0}, \ldots, u_{k-1} be integers and put $u_{n}=r_{1} u_{n-1}+\cdots+$ $r_{k} u_{n-k}$, for $n=k, k+1, \ldots$. The sequence $\left(u_{n}\right)_{n=0}^{\infty}$ is a linear recurrence sequence. Denote the field of rational numbers by \mathbf{Q}. It is well known (see page 63 of [14]) that, for $n \geqq 0$,

$$
\begin{equation*}
u_{n}=f_{1}(n) \alpha_{1}^{n}+\cdots+f_{t}(n) \alpha_{t}^{n} \tag{1}
\end{equation*}
$$

where f_{1}, \ldots, f_{t} are non-zero polynomials in n with degrees less than $\ell_{1}, \ldots, \iota_{t}$, respectively, and with coefficients from $\mathbf{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$, where $\alpha_{1}, \ldots, \alpha_{t}$ are the non-zero roots of the characteristic polynomial of the sequence, $x^{k}-r_{1} x^{k-1} \cdots-r_{k}$, and $\ell_{1}, \ldots, \ell_{t}$ are their respective multiplicities. We shall say that the sequence $\left(u_{n}\right)_{n=0}^{\infty}$ is non-degenerate if $t>1, f_{i} \neq 0$, for $1 \leqq i \leqq t$, and α_{i} / α_{j}, for $1 \leqq i<j \leqq t$, are not roots of unity.

In 1921, Polya [22] showed that if u_{n} is the n-th term of a non-degenerate linear recurrence sequence, then $\lim \sup _{n \rightarrow \infty} P\left(u_{n}\right)=\infty$. In 1935, Mahler

[^0]
[^0]: Received by the editors October 12, 1983.
 This research was supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

