THE DISTRIBUTION OF RATIONAL POINTS ON A CURVE DEFINED MODULO Q

R. A. SMITH

1. Introduction. Let f be a polynomial defined over \mathbf{Z} in two variables of total degree $d \geqq 2$, and let $V_{p}=\left\{\mathbf{x} \in C_{p}: f(\mathbf{x}) \equiv 0 \bmod p\right\}$ for each prime p, where $C_{p}=\left\{(x, y) \in \mathbf{Z}^{2}: 0 \leqq x, y<p\right\}$. For each subset B in C_{p}, let $N_{p}(B)=\operatorname{card}\left(B \cap V_{p}\right)$ and $N_{p}=\operatorname{card} V_{p}$. If B is a box in C_{p}, that is,

$$
B=\left\{(x, y) \in C_{p}: h<x \leqq h+H, k<y \leqq k+K\right\}
$$

where $0 \leqq h<h+H \leqq p$ and $0 \leqq k<k+K \leqq p$, it is known that (cf. [2], [12])

$$
\begin{equation*}
\left|N_{p}(B)-\frac{|B|}{\left|C_{p}\right|} N_{p}\right| \leqq 4 \ln ^{2} p \max _{\mathbf{u} \in C_{p}^{*}}\left|S_{p}(\mathbf{u})\right|, \tag{1}
\end{equation*}
$$

where $C_{p}^{*}=C_{p}-\{\mathbf{0}\}$ and $S_{p}(\mathbf{u})$ is the exponential sum defined by

$$
\begin{equation*}
S_{p}(\mathbf{u})=\sum_{\mathbf{x} \in V_{p}} e_{p}(\mathbf{u} \cdot \mathbf{x}) \tag{2}
\end{equation*}
$$

with $e_{p}(t)=\exp (2 \pi i t / p)$. For simplicity, we shall assume that f is absolutely irreducible modulo p for all sufficiently large p, and so, by Weil's well-known result [14],

$$
\begin{equation*}
N_{p}=p+0\left(p^{1 / 2}\right) \tag{3}
\end{equation*}
$$

Furthermore, we know, by Bombieri [1] (or Chalk and Smith [4]), that

$$
\begin{equation*}
\left|S_{p}(\mathbf{u})\right| \leqq\left(d^{2}+2 d-3\right) p^{1 / 2}+d^{2} \tag{4}
\end{equation*}
$$

for each $\mathbf{u} \in C_{p}^{*}$. If we substitute these results into (1), we obtain

$$
\begin{equation*}
N_{p}(B)=\frac{|B|}{p}+O\left(p^{1 / 2} \ln ^{2} p\right) \tag{5}
\end{equation*}
$$

for all sufficiently large p. (All O-terms are independent of p, though the inherent constant depends upon d; the same holds for the Vinogradov symbols $<$ and 》.) This result shows that the zeros of $\mathrm{f}(x, y)$ modulo p

