THE DISTRIBUTION OF RATIONAL POINTS ON A CURVE DEFINED MODULO Q

R. A. SMITH

1. Introduction. Let f be a polynomial defined over Z in two variables of total degree $d \ge 2$, and let $V_p = \{\mathbf{x} \in C_p : f(\mathbf{x}) \equiv 0 \mod p\}$ for each prime p, where $C_p = \{(x, y) \in \mathbb{Z}^2 : 0 \le x, y < p\}$. For each subset B in C_p , let $N_p(B) = \operatorname{card} (B \cap V_p)$ and $N_p = \operatorname{card} V_p$. If B is a box in C_p , that is,

$$B = \{ (x, y) \in C_p : h < x \leq h + H, k < y \leq k + K \},\$$

where $0 \leq h < h + H \leq p$ and $0 \leq k < k + K \leq p$, it is known that (cf. [2], [12])

(1)
$$\left| N_p(B) - \frac{|B|}{|C_p|} N_p \right| \leq 4 \ln^2 p \max_{\mathbf{u} \in C_p^*} |S_p(\mathbf{u})|,$$

where $C_p^* = C_p - \{0\}$ and $S_p(\mathbf{u})$ is the exponential sum defined by

(2)
$$S_p(\mathbf{u}) = \sum_{\mathbf{x} \in V_p} e_p(\mathbf{u} \cdot \mathbf{x}),$$

with $e_p(t) = \exp(2\pi i t/p)$. For simplicity, we shall assume that f is absolutely irreducible modulo p for all sufficiently large p, and so, by Weil's well-known result [14],

(3)
$$N_p = p + 0(p^{1/2}).$$

Furthermore, we know, by Bombieri [1] (or Chalk and Smith [4]), that

(4)
$$|S_p(\mathbf{u})| \leq (d^2 + 2d - 3)p^{1/2} + d^2$$

for each $\mathbf{u} \in C_p^*$. If we substitute these results into (1), we obtain

(5)
$$N_p(B) = \frac{|B|}{p} + O(p^{1/2} \ln^2 p),$$

for all sufficiently large p. (All O-terms are independent of p, though the inherent constant depends upon d; the same holds for the Vinogradov symbols \ll and \gg .) This result shows that the zeros of f(x, y) modulo p

Received by the editors July 4, 1983. ...

Copyright © 1985 Rocky Mountain Mathematics Consortium