GREEDY ALGORITHM AND COINAGE SYSTEMS

CELIA K. ROUSSEAU AND CECIL C. ROUSSEAU,

A. L. LIU, AND M. S. KLAMKIN

Given a coinage system with coins of denominations $1=c_{0}<c_{1}<$ $\cdots<c_{k}$, let $f_{k}(x)$ denote the minimum number of coins needed to give change for the amount x. By the principle of optimality

$$
\begin{equation*}
f_{k}(x)=\min _{m \geqq 0}\left\{m+f_{k-1}\left(x-m c_{k}\right)\right\} \tag{1}
\end{equation*}
$$

where f_{k-1} refers to the corresponding function for the coinage system with denominations c_{0}, \ldots, c_{k-1}. When the greedy algorithm is applied to the minimization problem, the number of coins used to give change for the amount x is

$$
\begin{equation*}
g_{k}(x)=\left[x / c_{k}\right]+g_{k-1}\left(x-\left[x / c_{k}\right] c_{k}\right) \tag{2}
\end{equation*}
$$

Our paper gives a partial solution to the problem of characterizing those coinage systems for which $f_{k}=g_{k}$. Subsequent to the presentation of our paper, we found that a complete solution of the problem was obtained in [1].

Reference

1. M. J. Magazine, G. L. Nemhauser and L. E. Trotter, Jr., When the greedy solution solves a class of knapsack problems. Operations Research (Journal of the Operations Research Society of America) 23 (1975) 207-217.
C. K. and C. C. Rousseau: Memphis State University, Memphis
A. L. Liu and M. S. Klamkin: University of Alberta, Edmonton.
