FOURIER COEFFICIENTS OF NON-ANALYTIC AUTOMORPHIC FUNCTIONS OF SEVERAL VARIABLES

V. VENUGOPAL RAO

1. Introduction. A well known theorem of H. Hamburger [2] states that the Riemann zeta function can be determined from its functional equation, under certain conditions of regularity. This result has been generalized by E. Hecke [3] to the zeta function of an imaginary quadratic field, over the field of rational numbers. Since then the general problem of determining all meromorphic functions, $\phi(s)$, which are expressible as a Dirichlet series absolutely convergent in some right half plane and satisfying functional equations of the type $\xi(s)=\xi(k-s)$, with

$$
\xi(s)=\left(\frac{2 \pi}{\lambda}\right)^{-s}(\Gamma(s))^{a}\left(\Gamma\left(\frac{s}{2}\right)\right)^{b}\left(\Gamma\left(\frac{s+1}{2}\right)\right)^{c} \phi(s)
$$

has been studied. This problem has been solved for the functional equations of the type satisfied by the Dedekind zeta function for a real quadratic field over the field of rational numbers by H. Maass [5]. For this purpose Maass has introduced analogues of analytic automorphic functions, which he called non-analytic automorphic functions. Such functions are defined as complex valued functions, $f(\tau)$, of the two real variables x and y, with $\tau=x+i y$, satisfying the wave equation

$$
\left[y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\mu^{2}\right] f(\tau)=0
$$

in the upper half plane $y>0$ and possessing transformation properties for the transformation group generated by the mappings $\tau \rightarrow \tau+\lambda, \tau \rightarrow-1 / \tau$ (similar to analytic automorphic forms in the classical sense), and with the further requirement that $f(\tau)$ has growth restrictions as τ approaches the boundary of the upper half plane $\tau=x+i y, y>0$. Later, Maass [6] generalized these functions of two real variables to functions of several variables and he called these functions non-analytic automorphic functions of several variables. The precise definition of these functions is as follows.

We consider the $k+1$ dimensional hyperbolic space as a subspace of

