ON THE ESTIMATION OF EIGENVALUES OF HECKE OPERATORS

M. RAM MURTY

Dedicated to the Memory of E.G. Straus and R.A. Smith

1. Introduction. Let A denote the adele ring of the rational numbers Q and suppose that we have a cuspidal automorphic representation π of GL₂(A). (For the terminology and the details, we refer the reader to Gelbart [3] and Jacquet and Langlands [5]). Langlands [9] has described how one can attach an *L*-function to π . To describe this construction briefly, one can associate to π , a family of local representations π_p for each prime p of Q. This family is uniquely determined by π such that

(i) π_p is irreducible for every p,

(ii) for all but finitely many primes p, π_p is unramified (that is, the restriction of π_p to $GL_2(\mathbb{Z}_p)$ contains the identity representation exactly once),

(iii) π can be factored as the restricted infinite tensor product $\pi = \bigotimes_{p} \pi_{p}$.

Let S denote the set of primes p for which π_p is ramified. For $p \notin S$, it is known that π_p corresponds canonically to a semisimple conjugacy class σ_p in GL₂(C), where σ_p contains a matrix of the form

$$\begin{vmatrix} \alpha_p & 0 \\ 0 & \beta_p \end{vmatrix}.$$

If r denotes any finite dimensional complex representation of $GL_2(C)$, one can attach an L-series $L(s, \pi, r)$ as follows.

$$L(s, \pi, r) = \prod_{p} L(s, \pi_{p}, r),$$

where

$$L(s, \pi_p, r) = \det(1 - r(\sigma_p)p^{-s})^{-1}$$

whenever π_p is unramified. If π_p is ramified, and r is standard, we refer to J-L [5] for the definition of $L(s, \pi_p, r)$. It is known [9] that each $L(s, \pi, r)$

Research partially supported by NSERC grant # U 0237.

Received by November 22, 1983.