PROPERTIES OF PFAFFIANS

J. S. LOMONT AND M. S. CHEEMA

This paper is dedicated to E.G. Straus and R.A. Smith

1. Introduction. Several properties of Pfaffians of real skew-symmetric matrices are studied. In $\S 2$, the Pfaffian of a skew-symmetric matrix A is expressed in terms of traces of powers of A. Pfaffians of inverses and Kronecker products are studied next. If A and B are $2(2 m+1) \times 2(2 m+1)$ skew-symmetric matrices whose product is skew-symmetric, then at least one of the two matrices is singular. If A and B are $4 \measuredangle \times 4 \ell$ nonsingular skew-symmetric matrices whose product is skew-symmetric, then it is shown that $\operatorname{Pf}(A), \operatorname{Pf}(B)$ and $\operatorname{Pf}(A B)$ are either all positive all or negative. Finally, a multilinearity property of Pfaffian functions similar to the one in [4] for determinant functions is obtained, and a simple expression for the Frechet derivative of a Pfaffian function is obtained.
2. Pfaffian in terms of traces. If A is a real skew-symmetric matrix of order $2 n$ (denoted by $A \in M(2 n, \mathbf{R})$) then $\operatorname{det}(A)$ is the square of a polynomial in matrix elements of A. This polynomial is called the Pfaffian of A, and is denoted by $\operatorname{Pf}(A)$. It is well known, (see $[3,6,8]$) that

$$
\operatorname{Pf}(A)=\sum_{P} \varepsilon_{P} a_{i_{1 i} i_{2}} a_{i^{3} i_{4}} \cdots a_{i_{2 n-1} i_{2 n}}
$$

where P is the permutation

$$
\left|\begin{array}{llll}
1 & 2 & \cdots & 2 n \\
i_{1} & i_{2} & & i_{2 n}
\end{array}\right|
$$

ε_{P} its sign, and the sum is taken over all permutations with the restrictions $i_{1}<i_{2}, i_{3}<i_{4}, \ldots, i_{2 n-1}<i_{2 n}, i_{1}<i_{3}<i_{5} \cdots<i_{2 n-1}$. If

$$
A=\left[\begin{array}{cccl}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right]
$$

then $\operatorname{Pf}(A)=a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}$.

Recieved by the editors on October 23, 1983.

