NUMBERS ASSOCIATED WITH
 STIRLING NUMBERS AND \mathbf{X}^{x}

D. H. LEHMER

Dedicated to the memory of my good friend E. G. Strauss

Abstract

We discuss two infinite triganular matrices $b(n, k)$ and $B(n, k)$ of rational integers that are associated with the matrices $s(n, k)$ and $S(n, k)$ of the Stirling numbers of the first and second kind. The numbers $b(n, k)$ were introduced in 1974 by Comtet in treating the nth derivative of x^{x}. They are generated by powers of the function $(1+x) \log (1+x)$. The numbers $B(n, k)$ are generated by powers of the inverse function.

All four matrices are treated together and numerous properties and relations are presented. In particular it is shown that $b(4 h+1$, $2 h)=0$ for all integers $h>0$. The values of the elements in a particular row of a matrix as well as the row sum when reduced modulo a prime p are also considered.

In 1974 Comtet introduced the numbers $b(n, k)$ defined by

$$
\sum_{n=1}^{\infty} b(n, k) x^{n} / n!=\{(1+x) \log (1+x)\}^{k} / k!
$$

He used these numbers in the formula

$$
\frac{d^{n}\left(x^{x}\right)}{d x^{n}}=x^{x} \sum_{j=0}^{n}(\log x)^{j}\binom{n}{j} \sum_{n=0}^{n-j} b(n-j, n-k-j) x^{-h} .
$$

It is my purpose to show that these numbers are closely related to the Stirling numbers of the first and second kind and that they have a number of interesting properties. In fact it is important to introduce a second set of numbers $B(n, k)$ in order to treat the whole subject adequately.

We begin by introducing four infinite lower triangular matrices s, S, b, B. The elements on the nth row and k th column we denote by

$$
\begin{equation*}
s(n, k), S(n, k), b(n, k), B(n, k) \tag{1}
\end{equation*}
$$

with initial conditions

