LARGE HIGHLY POWERFUL NUMBERS ARE CUBEFUL

C.B. LACAMPAGNE* AND J.L. SELFRIDGE

Let the prodex of n be the product of the exponents of the primes when n is written in standard form. M. V. Subbarao has called a number highly powerful if its prodex is larger than that of any smaller number. Assume that $n=\prod_{i=1}^{k} p_{i}^{E}$ is highly powerful. Then it is clear that p_{i} is the i th prime, the exponents $E=E\left(p_{i}\right)$ are nonincreasing, $E\left(p_{k}\right) \geqq 2$ and $E\left(p_{k-1}\right)$ $\geqq 3$ (since $p_{k-1}^{4}<p_{k-1}^{2} p_{k}^{2}$). The theorem of the title asserts that if $p_{k}>N$, then $E\left(p_{k}\right) \geqq 3$. Further, we have developed an algorithm which finds all highly powerful numbers having $E\left(p_{k}\right) \neq 3$. The nineteen highly powerful numbers with $E\left(p_{k}\right)=2$ are listed in Table 1.

Table 1
THE 19 HIGHLY POWERFUL NUMBERS WHICH ARE NOT CUBEFUL

2^{2}	$2^{8} 3^{4} 5^{2}$	$2^{113^{6} 5^{5} 7^{4} 11^{3} 13^{3} 17^{2}}$
$2^{4} 3^{2}$	$2^{7} 3^{5} 5^{3} 7^{2}$	$2^{103^{7} 5^{5} 7^{4} 11^{3} 13^{3} 17^{2}}$
$2^{5} 3^{2}$	$2^{7} 3^{4} 5^{4} 7^{2}$	$2^{113^{7} 5^{5} 7^{4} 11^{3} 13^{3} 17^{2}}$
$2^{7} 3^{3} 5^{2}$	$2^{8} 3^{5} 5^{3} 7^{2}$	$2^{113} 3^{7} 5^{5} 7^{4} 11^{3} 13^{3} 17^{3} 192$
$2^{6} 3^{4} 5^{2}$	$2^{8} 3^{4} 5^{4} 7^{2}$	$2^{113} 3^{8} 5^{5} 7^{4} 11^{3} 13^{3} 17^{3} 19^{2}$
$2^{5} 3^{5} 5^{2}$	$2^{9} 3^{6} 5^{4} 7^{3} 11^{2}$	
$2^{7} 3^{4} 5^{2}$	$2^{113^{7} 547^{3} 11^{3} 13^{2}}$	

References

C. B. Lacampagne and J.L. Selfridge, Large Highly Powerful Numbers are Cubuful, Proc. Amer. Math. Soc. 91 (1984), 173-181.

University of Michigan, Flint, Michigan.

Received by the editors on May 11, 1983.

