SOME ISOMORPHISM INVARIANTS OF INTEGRAL GROUP RINGS

STEVE KMET AND SUDARSHAN SEHGAL

Dedicated to the memory of E.G. Straus and R.A. Smith

1. Introduction. Let $\mathbf{Z} G$ be the ingegral group ring of a group G. Denote by $\left\{\gamma_{i}(G)\right\}$, and $\left\{\delta_{i}(G)\right\}$ the lower central series, and the derived series of G, respectively. Let us denote by $D_{i}(G)$ the i th dimension subgroup

$$
D_{i}(G)=G \cap\left(1+J^{i}(G)\right)
$$

where $\Delta(G)$ is the augmentation ideal of $\mathbf{Z} G$. Suppose that the torsion elements of G form a subgroup $T=T(G)$. Then we write $T_{1}=T$ and for $i \geqq 1$ we write

$$
T_{i+1}=T_{i+1}(G)=\left[G, T_{i}(G)\right]
$$

the group generated by all commutators $(g, t)=g^{-1} t^{-1} g t, g \in G, t \in T_{i}$. Our main result is

Theorem A. Suppose that G and H are groups such that the torsion elements $T(G)$ and $T(H)$ of G and H respectively form subgroups. Suppose $\mathbf{Z} G \simeq \mathbf{Z} H$. Then we have

$$
\begin{array}{ll}
\text { (1) } & T_{i}(G) / T_{i+j}(G) \simeq T_{i}(H) / T_{i+j}(H) \quad \text { for } 1 \leqq j \leqq i+2, \tag{1}\\
\text { (2) } & D_{i}(G) \cap T(G) / D_{i+j}(G) \cap T(G) \\
& \simeq D_{i}(H) \cap T(H) / D_{i+i}(H) \cap T(H) \quad \text { for } 1 \leqq j \leqq i+2, \\
\text { (3) } & \gamma_{i}(T(G)) / \gamma_{i+j}(T(G)) \simeq \gamma_{i}(T(H)) / \gamma_{i+j}(T(H)) \quad \text { for } 1 \leqq j \leqq i, \\
\text { (4) } & \delta_{i}(T(G)) / \delta_{i+1}(T(G)) \simeq \delta_{i}(T(H)) / \delta_{i+1}(T(H)) \quad \text { for all } i, \\
\text { (5) } & \delta_{i}(T(G)) /\left[G, \delta_{i}(T(G))\right]^{\prime} \simeq \delta_{i}(T(H)) /\left[G, \delta_{i}(T(H))\right]^{\prime} \quad \text { for all } i .
\end{array}
$$

As a special case we have the following result.
Theorem B. Suppose that G and H are torsion groups such that $\mathbf{Z} G \simeq$ ZH. Then we have

[^0]
[^0]: Research supported by NSERC of Canada
 Received by the editors on January 17, 1984.
 Copyright © 1985 Rocky Mountain Mathematics Consortium

