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1, Introduction. Let ZG be the ingegral group ring of a group G. Denote 
by {77(G)}, and {dt{G)} the lower central series, and the derived series of 
G, respectively. Let us denote by D{{G) the ith dimension subgroup 

D,(G) = G n (1 + J'(G)), 

where J(G) is the augmentation ideal of ZG. Suppose that the torsion 
elements of G form a subgroup T = T(G). Then we write Tx = T and 
for / ^ 1 we write 

Ti+l = Ti+l(G) = [G, UG)l 

the group generated by all commutators (g, t) = g~lt~lgt, gtG, te T{, 
Our main result is 

THEOREM A. Suppose that G and H are groups such that the torsion 
elements T(G) and T(H) of G and H respectively form subgroups. Suppose 
ZG ^ 7JH. Then we have 

(1) T,(G)IT,+J(G) Ä T,(H)/Ti+J(H) for l£j£i + 2, 

DAG) H T(G)/Di+J(G) fi T(G) 

Ä D,{H) fi T(H)IDi+i(H) fi T(H) f o r l £ j £ i + 2, 

(3) ri{T(G))lri+J(T(G)) Ä r,(T(H))lrw(T(H)) for 1 ^ y ^ », 

(4) ö,<T(G))l3i+1(nG)) Ä dAT{H))löi+l{T{H)) for all », 

(5) ÖAT{G))/[G, d,{T(G))Y Ä Ö,{T(H))/[G, Ô,{T(H))Y for all i. 

As a special case we have the following result. 

THEOREM B. Suppose that G and H are torsion groups such that ZG m 
ZJH. Then we have 
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