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1. Introduction. The function Tk(n) representing the number of ways of 
expressing n as a product of A: factors (the order of the factors being taken 
into account) has been studied since the time of Dirichlet. In contrast to 
this well-established function, the corresponding sum function a(n, &), 
which we define as the sum of the divisors corresponding to such factor­
izations of«, does not seem to have appeared in the literature. Indeed the 
only reference the authors can submit is their preliminary report [9]. 

We here formally define the divisor sum function ar(n, k) for the rth 
powers of these divisors and obtain some identities (including two of a 
well-known Ramanujan type), and as an application obtain an asymptotic 
estimate for 2 n ^ aa(n, 3)ab(n, 3) which may be new. We extend the 
definition of ar{n, k) to the case when k is complex and obtain some 
asymptotic estimates for its summatory function. Towards the end, we 
introduce the notation of A>ply perfect numbers and raise some open 
problems. 

2. Preliminaries. Let 

Tk(n) = 2 1 
d\dz • • • dk=n 

for k a positive integer, so that r*(«) denotes the number of ways of ex­
pressing « as a product of k factors, the order of the factors being taken 
into account. In particular, let 

r(n) = T2(n) = £ 1 . 
d\dz=n 

It is clear that if Z^s) stands for the Riemann zeta function, we have 

W = f ; ^ 4 ^ = <7 + iUa> 1. 

zk(n) is multiplicative in «, and if 

n = p%i pp . . . pfr 
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