DENSITY OF M-TUPLES WITH RESPECT TO POLYNOMIALS

J. CHIDAMBARASWAMY AND R. SITARAMACHANDRARAO

1. Introduction. Let h, k and m be positive integers with $m \geqq 2, x$ real and $\geqq 1$, and $f_{1}, f_{2}, \ldots, f_{m}$ arbitrary nonconstant polynomials with integer coefficients. Let $M\left(x ; f_{1}, f_{2}, \ldots, f_{m} ; h ; k\right)$ denote the number of m-tuples $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ of positive integers such that $x_{i} \leqq x$ for $1 \leqq$ $i \leqq m$ and $\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{m}\left(x_{m}\right)\right)_{k}=h$. Here the symbol $\left(a_{1}, a_{2}, \ldots\right.$, $\left.a_{m}\right)_{k}$ stands for the greatest k-th power common divisor of $a_{1}, a_{2}, \ldots, a_{m}$ with the convention that $(0,0, \ldots, 0)_{k}=0$. We also write $d\left(f_{1}, f_{2}, \ldots\right.$, $\left.f_{m} ; h ; k\right)=\lim _{x \rightarrow \infty} x^{-m} M\left(x ; f_{1}, f_{2}, \ldots, f_{m} ; h ; k\right)$ and call this the density of the m-tuples $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ with $\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{m}\left(x_{m}\right)\right)_{k}=h$. In the special case when $f_{1}(x)=f_{2}(x)=\ldots, f_{m}(x)=x, h=k=1$, it is known due to Césaro [2], J. J. Sylvester [7], D. N. Lehmer [5] and J. E. Nymann [6] that this density is $1 / \zeta(m), \zeta(s)$ being Riemann's ζ-function. Recently, R. N. Buttsworth [1] determined this density in the general case with $k=1$ but his proof contains some serious errors-for example, his lemma 2.2 basic to his work is fallacious (See Section 4). In this paper we evaluate this density in the following cases: (1) $k=1$ and at least one of the polynomials is of degree less than m (2) $k \geqq 2$ and at least one of the polynomials is linear and (3) $k \geqq 1$ and the polynomials are primitive and irreducible. In fact, in each of the cases we obtain an asymptotic formula for $M\left(x ; f_{1}, f_{2}, \ldots, f_{m} ; h ; k\right)$ with an 0 -estimate for the error term (see Theorems 1,2 , and 3.)
2. Preliminaries. We denote by $\rho_{i}(n)$ the number of solutions $\bmod n$ of the congruence

$$
f_{i}(x) \equiv 0(\bmod n), \rho(n)=\prod_{i=1}^{m} \rho_{i}(n), \rho_{i}^{*}(n)=\max \left\{1, \rho_{i}(n)\right\}
$$

and

$$
\rho^{*}(n)=\prod_{i=1}^{m} \rho_{i}^{*}(n), D_{i}=\operatorname{deg} f_{i}(x), D=\prod_{i=1}^{m} D_{i} \text { and } u=\min _{1 \leq i \leqq m} D_{i} .
$$

Also $\mu(n)$ denotes the Möbius function and $\omega(n)$ the number of distinct prime factors of n.

Received by the editors June 6, 1983.

