THE GENERA OF PSL(F_{q})-LÜROTH COVERINGS

ARTHUR K. WAYMAN

1. Introduction. In [3] H. Hasse studies the ramification theory of Kummer and Artin-Schreier cyclic coverings of an algebraic function field in one variable. These cyclic extensions are special cases of a wider class of function fields which we will entitle Lüroth coverings. In this paper we will study in detail the ramification theory of $\operatorname{PSL}\left(\mathbf{F}_{q}\right)$-Lüroth coverings. We will classify all genus zero and genus one $\operatorname{PSL}\left(\mathbf{F}_{q}\right)$-Lüroth coverings of a rational function field and construct bases for the spaces of differentials of the first kind for coverings with genus $\geqq 2$.
For notation, definitions, and standard theorems used here, the reader may consult the bibliography.
2. Lüroth coverings. Let k be a field and Y an indeterminate over k. Denote by $\operatorname{PGL}(k)$ the group of k-automorphisms of the rational function field $k(Y)$. For each element $\sigma \in \operatorname{PGL}(k)$ there are elements $a_{\sigma}, b_{\sigma}, c_{\sigma}$, $d_{\sigma} \in k$ with $a_{\sigma} d_{\sigma}-b_{\sigma} c_{\sigma} \neq 0$ satisfying $\sigma(f)=f\left(\left(a_{\sigma} Y+b_{\sigma}\right) /\left(c_{\sigma} Y+d_{\sigma}\right)\right)$ for all $f \in k(Y)$. We recall that two substitutions

$$
Y \rightarrow \frac{a Y+b}{c Y+d} \text { and } Y \rightarrow \frac{a^{\prime} Y+b^{\prime}}{c^{\prime} Y+d^{\prime}}
$$

induce the same k-automorphism of $k(Y)$ if and only if $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=$ ($\lambda a, \lambda b, \lambda c, \lambda d$) for some $\lambda \in k^{x}=k-\{0\}$.

Let \mathscr{G} be a finite non-trivial subgroup of $\operatorname{PGL}(k)$. If $k(Y)^{\mathscr{g}}$ is the subfield of $k(Y)$ left invariant by the action of \mathscr{G}, then $k(Y)^{\mathscr{G}}$ contains k and from galois theory we have $\left[k(Y): k(Y)^{\mathscr{G}}\right]=|\mathscr{G}|$, where $|\mathscr{G}|$ denotes the cardinality of \mathscr{G}. By Lüroth's theorem (see van der Waerden [5]) there is an element $Z_{\mathscr{G}}$ in $k(Y)$ such that $k(Y)^{\mathscr{G}}=k\left(Z_{\mathscr{G}}\right)$. We can write $Z_{s}=U_{s} / V_{g}$ for some $U_{s}, V_{g} \in k[Y]$ with $\left(U_{s}, V_{s}\right)=1$. Moreover,

$$
\operatorname{deg}_{Y} Z_{\mathscr{G}}=\max \left\{\operatorname{deg}_{Y} U_{\mathscr{G}}, \operatorname{deg}_{Y} V_{\mathscr{G}}\right\}=|\mathscr{G}| .
$$

We remark that any other generator of $k(Y)^{s}$ is of the form $\left(a Z_{s}+b\right) /$ $\left(c Z_{s}+d\right)$ where $a, b, c, d \in k$ and $a d-b c \neq 0$.
Let K be an algebraic function field in one variable over the algebraically

[^0]
[^0]: Received by the editors on December 20, 1982 and in revised form on September 27, 1983.

