THE SCHUR MULTIPLIER OF THE AUTOMORPHISM GROUP OF THE MATHIEU GROUP \mathbf{M}_{22}

JOHN F. HUMPHREYS

In [1], Gagola and Garrison show that the Sylow 2-subgroups of the Schur multiplier of the automorphism group of M_{22} are cyclic of order two. In this note, we make use of this result to prove the following.

Theorem. The Schur multiplier of the automorphism group of the Mathieu group M_{22} is cyclic of order two.

Proof. Let α be a cocycle of $G=$ Aut M_{22} of odd prime order p. On restriction to M_{22}, α gives rise to a cocycle β say. Since $\left|G: M_{22}\right|=2$, it follows by Satz IX of [5], that β also has order p. However, Mazat [4], has shown that the Schur multiplier of M_{22} is cyclic of order 12 , so we deduce that p must be 3 . Thus there is a group $3 . G$ with a cyclic central subgroup A whose quotient is isomorphic to G and $3 . G$ has a subgroup 3. M_{22} of index 2. Fixing a nontrivial irreducible character λ of A, the irreducible representations of $3 . M_{22}$ which restrict to A as a multiple of λ may be regarded as projective representations of M_{22} and as such their characters are well-known (see [3]). The degrees of these irreducible representations are $21,45,45,99,105,105,210,231,231,330$ and 384. Since the irreducible Brauer characters modulo 3 of $3 . M_{22}$ are precisely those of M_{22}, we may use the results of [3] to see that the restrictions of the characters 21 and 210 to 3-regular conjugacy classes give irreducible Brauer characters. We also note that the product character 21.21 has the decomposition

$$
\begin{equation*}
21.21=21+105_{1}+105_{2}+210 \tag{1}
\end{equation*}
$$

into irreducible characters.
The two classes of elements of order 11 in M_{22} fuse into one class in G. This means that the two characters of degree 105 (being exceptional for 11) give rise to an irreducible character of $3 . G$ of degree 210 . For each other irreducible representation D of $3 . M_{22}$ whose restriction to A is a multiple of λ, there is a pair D^{+}, D^{-}of representations of $3 . G$. If θ is the character of D, the characters θ^{+}and θ^{-}agree on $3 . M_{22}$ and $\theta^{+}(g)=-\theta^{-}(g)$ for all $g \in 3 . G \backslash 3 . M_{22}$. Thus (1) gives

