# REFLEXIVE ALGEBRAS OF MATRICES 

GEORGE PHILLIP BARKER AND JOYCE JABEN CONKLIN


#### Abstract

We study some sufficient properties for an algebra of matrices to be reflexive. In particular we show that a semismple algebra is reflexive. Commutative algebras are then considered, and it is seen that a commutative algebra of $3 \times 3$ matrices is reflexive if either it can be diagonalized or it is of dimension 2. Finally we show that the algebra of all operators which leave invariant every element of a complemented lattice of subspaces forms a semisimple algebra. This is related to a result by Harrison and Longstaff on reflexive lattices of subspaces.


1. Introduction. Let $V$ be a vector space of finite dimension $n$ over the complex number $\mathbf{C}$. The algebra of all linear operators an $V$ is denoted by Hom $V$. The algebra of $n \times n$ matrices over $\mathbf{C}$ is denoted by $M_{n}$.

The set of all subspaces of $V$ is a modular lattice under the operations intersection (meet) and sum (join) of two subspaces. Further, any sublattice of this lattice is again modular.

Let $\mathscr{L}$ be a lattice of subspaces of $V$ and $\mathscr{A}$ a subalgebra of $\operatorname{Hom}(V)$. We define the operations Alg and Lat as follows. Alg $\mathscr{L}$ is the set (necessarily an algebra) of all $A \in \operatorname{Hom} V$ which leave invariant every subspace $W \in \mathscr{L}$. Similarly Lat $\mathscr{A}$ is the lattice of all subsapaces of $V$ which are left invariant by every element of $\mathscr{A} \cdot \mathscr{L}$ (respectively $\mathscr{A}$ ) is called reflexive iff Lat $\operatorname{Alg} \mathscr{L}=\mathscr{L}$, (Alg Lat $\mathscr{A}=\mathscr{A}$ respectively). The classification of reflexive algebras and reflexive lattices is far from complete even in finite dimensional spaces, although some progress has been made (cf. [1, 3, 5, $6,11]$ ). It is worth noting, however, that every finite dimensional algebra is isomorphic to a reflexive one (cf. Brenner and Bulter, J. London Math. Soc. 40 (1965), 183-187). In this paper we shall study reflexivity and give a more algebraic proof of a result due to Harrison and Longstaff [7]. We shall also study some particular types of algebras such as commutative algebras of matrices. We close with a discussion of subspaces lattices which may be useful in generating examples.
In what follows all lattices will contain $\{0\}$ and $V$, and all algebras will contain the identity, $I$, except for certain subalgebras of nilpotent matrices.

