ON THE PIERCE-BIRKHOFF CONJECTURE

LOUIS MAHÉ

Dedicated to the memory of Gus Efroymson

1. Introduction. In 1956, Birkhoff and Pierce [1] asked the question of characterizing the " ℓ -rings" and "f-rings" free on *n* generators, and conjectured that they should be rings of continuous functions on \mathbb{R}^n , piecewise polynomials. The precise question known as the "Pierce-Birkhoff conjecture" is: given $h: \mathbb{R}^n \to \mathbb{R}$ continuous, piecewise polynomial, is *h* definable with polynomials by means of the operations sup and inf?

In a paper of Henriksen and Isbell [5] we can find explicit formulas showing that the set of such functions is closed under addition and multiplication, and so is a ring. We will call that ring ISD (Inf and Supdefinable).

Here we give a proof in the case n = 2 and make a study for the general case. G. Efroymson proved also this result independently and in a somewhat different way.

2. General Presentation. Given $P_1, \ldots, P_r \in \mathbb{R}[X_1, \ldots, X_n]$, let A_i be the semialgebraic subset of \mathbb{R}^n defined by $h = P_i$. The point is to show that for any pair (i, j), there exists $e_{ij} \in \text{ISD}$ such that $e_{ij/A_j} \ge P_{j/A_j}$ and $e_{ij/A_i} \le P_{i/A_i}$: if we get such functions, we have $h = \sup_j(\text{Inf}_i(e_{ij}, P_j))$ and we are done.

So, let us complete the set $\{P_i - P_j\}_{i,j}$ in a separating family $\{Q_1, \ldots, Q_s\}$ [2] [4], which we can suppose made with irreducible polynomials.

All the functions considered being continuous, it is enough to work with the open sets of the partition which are the $\{x \in \mathbb{R}^n / | \bigwedge_{i=1}^s Q_i \varepsilon_i \ 0\}$ with ε_i strict inequalities [such a set of disjoint open sets whose union is dense in \mathbb{R}^n will be called "open partition" of \mathbb{R}^n]. Let us call again $(A_i)_{i=1}^b$ these open sets:

We get three possibilities for the pair (A_i, A_j) :

- 1) $\bar{A}_i \cap \bar{A}_j = \phi$
- 2) $\operatorname{codim}(\bar{A}_i \cap \bar{A}_j) = 1$