CONSTRUCTING REAL PRIME DIVISORS USING NASH ARCS

ROBERT ROBSON

Dedicated to the memory of Gus Efroymson

Let $A = R[x_1, \ldots, x_n]$ be the affine coordinate ring of a variety V defined over the real closed field R. We denote the closed real points of V by $X \subset R^n$ and the simple points of X by $X_0 \subset X$. A geometric preorder P on the function field $K = R(x_1, \ldots, x_n)$ is a preorder corresponding to an (open) semialgebraic subset of X_0 —in other words, there is an open semialgebraic set $U \subset X_0$ such that $f \in A \cap P$ precisely if $f \ge 0$ on U.

Fix a geometric order P on K. If $B \subset K$ is any subring and $I \subset B$ is an ideal, we say that I is convex if $f \in I$ whenever $0 \leq f \leq g$ and $g \in I$. Here " $f \leq g$ " means $g - f \in P$. A valuation ring $(B, **) \subset K$ is said to be a real prime divisor if there is a domain $C \subset K$ of finite type over R and a minimal convex prime $g \subset C$ such that B is the localization $C_{(g)}$. The theorem motivating this work is the following.

THEOREM Let $p \subset A$ be a convex prime. Then there is a real prime divisor $(B, m) \subset K$ with $m \cap A = p$.

Set $r = \text{tr.deg. }_{R}K$. In order to prove this theorem we construct (r-1) functions $\xi_1, \ldots, \xi_{r-1} \in K$ and a total order $Q \subset K$ containing:

(A) *P*,

(B) $h^2(\xi_1, \ldots, \xi_{r-1}) - C_h^2$ for every non-zero polynomial $h \in R[T_1, \ldots, T_r]$ (pure polynomial ring) and some constants $C_h \in A \sim \mathcal{P}$ depending on h, and

(C) $g^2 - f^2 h^2(\xi_1, \ldots, \xi_{r-1})$ for every $h \in R[T_1, \ldots, T_{r-1}], g \in A \sim A$, and $f \in A$.

Once we know that such an order exists, it is a routine matter to show that the convex hull of the ring $A_{(A)}[\xi_1, \ldots, \xi_{r-1}] \subset K$ in the order Q is our desired real prime divisor. Thus the hard part is defining ξ_1, \ldots, ξ_{r-1} and proving the existence of Q.

Once the ξ_i are defined, Q exists providing that given any finite collection of inequalities from (A), (B), and (C) we may find a point $p \in U$ at which all the inequalities are fulfilled. Our definition of the ξ_i uses