CONSTRUCTING REAL PRIME DIVISORS USING NASH ARCS

ROBERT ROBSON

Dedicated to the memory of Gus Efroymson

Let $A=R\left[x_{1}, \ldots, x_{n}\right]$ be the affine coordinate ring of a variety V defined over the real closed field R. We denote the closed real points of V by $X \subset R^{n}$ and the simple points of X by $X_{0} \subset X$. A geometric preorder P on the function field $K=R\left(x_{1}, \ldots, x_{n}\right)$ is a preorder corresponding to an (open) semialgebraic subset of X_{0}-in other words, there is an open semialgebraic set $U \subset X_{0}$ such that $f \in A \cap P$ precisely if $f \geqq 0$ on U.

Fix a geometric order P on K. If $B \subset K$ is any subring and $I \subset B$ is an ideal, we say that I is convex if $f \in I$ whenever $0 \leqq f \leqq g$ and $g \in I$. Here " $f \leqq g$ " means $g-f \in P$. A valuation ring $(B, m) \subset K$ is said to be a real prime divisor if there is a domain $C \subset K$ of finite type over R and a minimal convex prime ${ }_{g} \subset C$ such that B is the localization $C_{(g)}$. The theorem motivating this work is the following.

Theorem Let $\mu \subset A$ be a convex prime. Then there is a real prime divisor $(B, m) \subset K$ with $m \cap A=\mu$.

Set $r=\operatorname{tr}$. deg. ${ }_{R} K$. In order to prove this theorem we construct $(r-1)$ functions $\xi_{1}, \ldots, \xi_{r-1} \in K$ and a total order $Q \subset K$ containing:
(A) P,
(B) $h^{2}\left(\xi_{1}, \ldots, \xi_{r-1}\right)-C_{h}^{2}$ for every non-zero polynomial $h \in R\left[T_{1}, \ldots, T_{r}\right]$ (pure polynomial ring) and some constants $C_{h} \in A \sim h$ depending on h, and
(C) $g^{2}-f^{2} h^{2}\left(\xi_{1}, \ldots, \xi_{r-1}\right)$ for every $h \in R\left[T_{1}, \ldots, T_{r-1}\right], g \in A \sim \nsim$, and $f \in \mu$.

Once we know that such an order exists, it is a routine matter to show that the convex hull of the ring $A_{(\mu)}\left[\xi_{1}, \ldots, \xi_{r-1}\right] \subset K$ in the order Q is our desired real prime divisor. Thus the hard part is defining $\xi_{1}, \ldots, \xi_{r-1}$ and proving the existence of Q.

Once the ξ_{i} are defined, Q exists providing that given any finite collection of inequalities from (A), (B), and (C) we may find a point $p \in U$ at which all the inequalities are fulfilled. Our definition of the ξ_{i} uses

