EXTENSIONS OF SEMIDEFINITE FUNCTIONS

J. M. GAMBOA

Dedicated to the memory of Gus Efroymson

Gondard and Ribenboim [4] proposed the following problem: let $V \subseteq \mathbb{R}^n$ be an algebraic set, $f \in \mathbb{R}[x]$, $\mathbf{x} = (x_1, \ldots, x_n)$, such that $f|_V \ge 0$. Does there exist $F \in \mathbb{R}[x]$, $F \ge 0$ over \mathbb{R}^n , such that $F|_V = f|_V$? They gave a partial positive answer. We prove a stronger result.

THEOREM 1. Let $V \subset \mathbb{R}^n$ be an algebraic set, $f \in \mathbb{R}[x]$ with $f|_V \ge 0$ and $\{a \in \mathbb{R}^n : f(a) = 0\} \cap V_c = \emptyset$ (V_c is the locus of central points of V). Then, there exists $F \in \mathbb{R}[x]$ non negative over \mathbb{R}^n such that $F|_V = f|_V$. Moreover, if $f|_V > 0$, F is positive over \mathbb{R}^n .

In the same paper [4] it is proved that the answer to the problem of extending f, if $f/_V \ge 0$, is negative in general. For example, let us take $V = \{y^2 - x^3 = 0\}$ and f = x However, we have been able to prove the following theorem.

THEOREM 2. If $f \in \mathbf{R}[x]$ and $f|_V \ge 0$, there exists an odd positive integer m and $F \in \mathbf{R}[x]$ non negative over \mathbf{R}^n , verifying $F|_V = f^m|_V$

We look at these problems in two different ways.

- A) We restrict ourselves to the case where $V \subset \mathbb{R}^n$ is a curve.
- B) Given $f \in \mathbf{R}[x]$ such that $f|_{V} \ge 0$, does there exist
 - i) A polynomial $F \in \mathbf{R}[x]$
 - ii) A regular function F
 - iii) A rational function F

such that $F \ge 0$ (where F is defined) and $f|_V = F|_V$?

If we denote by D(f) the "bad set" of f (see [3]), we prove the following.

PROPOSITION 3. Condition ii) is equivalent to condition iii), and both are implied by $D(f) = \emptyset$.

So, we are concerned with the existence of polynomial extensions (condition i)) or regular extensions (condition ii))

Since $\operatorname{codim}_V D(F) \ge 2$ when $V \subset \mathbb{R}^n$ is a normal algebraic set, ([3]), we conclude the following proposition.