EXTENSIONS OF SEMIDEFINITE FUNCTIONS

J. M. GAMBOA

Dedicated to the memory of Gus Efroymson
Gondard and Ribenboim [4] proposed the following problem: let $V \subseteq$ \mathbf{R}^{n} be an algebraic set, $f \in \mathbf{R}[x], \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, such that $\left.f\right|_{V} \geqq 0$. Does there exist $F \in \mathbf{R}[x], F \geqq 0$ over \mathbf{R}^{n}, such that $F /_{V}=f / V$? They gave a partial positive answer. We prove a stronger result.

Theorem I. Let $V \subset \mathbf{R}^{n}$ be an algebraic set, $f \in \mathbf{R}[x]$ with $f / V \geqq 0$ and $\left\{a \in \mathbf{R}^{n}: f(a)=0\right\} \cap V_{c}=\varnothing\left(V_{c}\right.$ is the locus of central points of V). Then, there exists $F \in \mathbf{R}[x]$ non negative over \mathbf{R}^{n} such that $F /_{V}=\left.f\right|_{V}$. Moreover, if $\left.f\right|_{V}>0, F$ is positive over \mathbf{R}^{n}.

In the same paper [4] it is proved that the answer to the problem of extending f, if $\left.f\right|_{V} \geqq 0$, is negative in general. For example, let us take $V=\left\{y^{2}-x^{3}=0\right\}$ and $f=x$ However, we have been able to prove the following theorem.

Theorem 2. If $f \in \mathbf{R}[x]$ and $\left.f\right|_{V} \geqq 0$, there exists an odd positive integer m and $F \in \mathbf{R}[x]$ non negative over \mathbf{R}^{n}, verifying $F / V=f^{m} / V$

We look at these problems in two different ways.
A) We restrict ourselves to the case where $V \subset \mathbf{R}^{n}$ is a curve.
B) Given $f \in \mathbf{R}[x]$ such that $\left.f\right|_{V} \geqq 0$, does there exist
i) A polynomial $F \in \mathbf{R}[x]$
ii) A regular function F
iii) A rational function F
such that $F \geqq 0$ (where F is defined) and $f /_{V}=F / /_{V}$?
If we denote by $D(f)$ the "bad set" of f (see [3]), we prove the following.
Proposition 3. Condition ii) is equivalent to condition iii), and both are implied by $D(f)=\varnothing$.

So, we are concerned with the existence of polynomial extensions (condition i)) or regular extensions (condition ii))

Since $\operatorname{codim}_{V} D(F) \geqq 2$ when $V \subset \mathbf{R}^{n}$ is a normal algebraic set, ([3]), we conclude the following proposition.

