THE Q-ANALOGUE OF STIRLING'S FORMULA

DANIEL S. MOAK

Abstract. F.H. Jackson defined a q-analogue of the factorial $n!=1 \cdot 2 \cdot 3 \cdots n$ as $(n!)_{q}=1 \cdot(1+q) \cdot\left(1+q+q^{2}\right) \cdots(1+q+$ $q^{2}+\cdots+q^{n-1}$, which becomes the ordinary factorial as $q \rightarrow 1$. He also defined the q-gamma function as

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, 0<q<1
$$

and

$$
\Gamma_{q}(x)=\frac{\left(q^{-1} ; q^{-1}\right)_{\infty}}{\left(q^{-x} ; q^{-1}\right)_{\infty}}(q-1)^{1-x} q^{\binom{x}{2}}, q>1
$$

where

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

It is known that if $q \rightarrow 1, \Gamma_{q}(x) \rightarrow \Gamma(x)$, where $\Gamma(x)$ is the ordinary gamma function. Clearly $\Gamma_{q}(n+1)=(n!)_{q}$, so that the q-gamma function does extend the q factorial to non integer values of n. We will obtain an asymptotic expansion of $\Gamma_{q}(z)$ as $|z| \rightarrow \infty$ in the right halfplane, which is uniform as $q \rightarrow 1$, and when $q \rightarrow 1$, the asymptotic expansion becomes Stirling's formula.

1. Introduction. In recent years many of the classical facts about the ordinary gamma function have been extended to the q-gamma function. See Askey [2], and [5], [6]. Using an identity of Euler,

$$
\begin{equation*}
\frac{1}{(x ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{x^{n}}{(q ; q)_{n}}, \tag{1.1}
\end{equation*}
$$

$\Gamma_{q}(x)$ can be written as,

$$
\begin{equation*}
\Gamma_{q}(x)=(q ; q)_{\infty}(1-q)^{1-x} \sum_{n=0}^{\infty} \frac{q^{n x}}{(q ; q)_{n}}, 0<q<1, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(x)=\left(q^{-1} ; q^{-1}\right)_{\infty} q^{\left(\frac{x}{2}\right)}(q-1)^{1-x} \sum_{n=0}^{\infty} \frac{q^{-n x}}{\left(q^{-1} ; q^{-1}\right)_{n}}, q>1 \tag{1.3}
\end{equation*}
$$

