ON THE PICARD GROUP OF A COMPACT COMPLEX NILMANIFOLD

ROBERT J. FISHER, JR.

1. Introduction. This paper deals with compact complex nilmanifolds. By a nilmanifold we mean a homogeneous space of a nilpotent Lie group. The nilmanifold we consider arises as the compact quotient of a simply connected nilpotent Lie group G by a lattice Γ of G. We write G/Γ to denote such a space. In general, G/Γ is a non-Kähler manifold, and in fact, it is Kähler if and only if it is a complex torus (see [5]). However, G/Γ is a generalization of the torus, and to this end, there is a canonically associated torus T given by

$$(1.1) T = G/[G, G]/\pi(\Gamma),$$

where G/[G, G] is a vector group and $\pi(\Gamma)$ is a lattice of G/[G, G], $\pi: G \to G/[G, G]$ being the projection map. T plays an important role in the analysis of G/Γ . We point out that there is a holomorphic fibration of G/Γ over T where the fibre is the compact complex nilmanifold $N_1 = [G, G]/\Gamma_1$, $\Gamma_1 = \Gamma \cap [G, G]$. We let $\pi: G/\Gamma \to T$ also denote the bundle map.

Our main purpose is to give a description of the Picard group of G/Γ ; that is, $\operatorname{Pic}(G/\Gamma)$, the group of holomorphic isomorphism classes of holomorphic line bundles on G/Γ . To this end, we obtain a partial generalization of the Appell-Humbert Theorem from the case of the complex torus to the case of G/Γ . Sakane [4] has shown that the first Chern class of any holomorphic line bundle $\mathscr L$ on G/Γ , $c_1(\mathscr L)$, is represented by a unique hermitian form H defined on G/[G, G]. As a consequence of the Appell-Humbert Theorem, we know that H corresponds to the first Chern class of a line bundle on the complex torus T if and only if the imaginary part of H, A, is integral on the lattice $\pi(\Gamma)$. Consequently, we can factor $\mathscr L$ as

$$\mathcal{L} = \mathcal{L}_{\lambda} \otimes \pi^* \mathcal{L}_{1},$$

where \mathcal{L}_{λ} is the line bundle associated to some character λ of the lattice Γ and $\pi^*\mathcal{L}_1$ is the pullback of a line bundle \mathcal{L}_1 on T with $c_1(\mathcal{L}_1)$ determined by H. See Theorem 3 for details.