ON THE PICARD GROUP OF A COMPACT COMPLEX NILMANIFOLD

ROBERT J. FISHER, JR.

1. Introduction. This paper deals with compact complex nilmanifolds. By a nilmanifold we mean a homogeneous space of a nilpotent Lie group. The nilmanifold we consider arises as the compact quotient of a simply connected nilpotent Lie group G by a lattice Γ of G. We write G / Γ to denote such a space. In general, G / Γ is a non-Kähler manifold, and in fact, it is Kähler if and only if it is a complex torus (see [5]). However, G / Γ is a generalization of the torus, and to this end, there is a canonically associated torus T given by

$$
\begin{equation*}
T=G /[G, G] / \pi(\Gamma) \tag{1.1}
\end{equation*}
$$

where $G /[G, G]$ is a vector group and $\pi(\Gamma)$ is a lattice of $G /[G, G], \pi$: $G \rightarrow G /[G, G]$ being the projection map. T plays an important role in the analysis of G / Γ. We point out that there is a holomorphic fibration of G / Γ over T where the fibre is the compact complex nilmanifold $N_{1}=$ $[G, G] / \Gamma_{1}, \Gamma_{1}=\Gamma \cap[G, G]$. We let $\pi: G / \Gamma \rightarrow T$ also denote the bundle map.

Our main purpose is to give a description of the Picard group of G / Γ; that is, $\operatorname{Pic}(G / \Gamma)$, the group of holomorphic isomorphism classes of holomorphic line bundles on G / Γ. To this end, we obtain a partial generalization of the Appell-Humbert Theorem from the case of the complex torus to the case of G / Γ. Sakane [4] has shown that the first Chern class of any holomorphic line bundle \mathscr{L} on $G / \Gamma, c_{1}(\mathscr{L})$, is represented by a unique hermitian form H defined on $G /[G, G]$. As a consequence of the Appell-Humbert Theorem, we know that H corresponds to the first Chern class of a line bundle on the complex torus T if and only if the imaginary part of H, A, is integral on the lattice $\pi(\Gamma)$. Consequently, we can factor \mathscr{L} as

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{\lambda} \otimes \pi^{*} \mathscr{L}_{1} \tag{1.2}
\end{equation*}
$$

where \mathscr{L}_{λ} is the line bundle associated to some character λ of the lattice Γ and $\pi^{*} \mathscr{L}_{1}$ is the pullback of a line bundle \mathscr{L}_{1} on T with $c_{1}\left(\mathscr{L}_{1}\right)$ determined by H. See Theorem 3 for details.

