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ON THEOREMS OF B.H. NEUMANN CONCERNING 
FC- GROUPS, II 

V. FABER* AND M.J. TOMKINSON 

ABSTRACT. B.H. Neumann characterized central-by-finite and 
finite-by-abelian groups. In this paper, we generalize these results by 
characterizing those members of a large class of groups that are cen-
tral-by (<m) or (<m)-by-abelian. Here we mean that a group is 
( < m) if its cardinality is less than m for some infinite cardinal m. 

1. Introduction. B.H. Neumann [8] characterized central-by-finite and 
finite-by-abelian groups. A group G is central-by-finite if and only if 
each subgroup has only finitely many conjugates or, equivalently, U/UG 

is finite for each subgroup U of G. Here UG denotes the core of U; that 
is, the largest normal subgroup of G contained in U. We use UG to denote 
the normal closure of U in G; then G is finite-by-abelian if and only if 
\UG: U\ is finite for each subgroup U of G. 

Eremin [3] indicated that it is only necessary to consider the abelian 
subgroups of G in the first of these results. A corrected form of Eremin's 
proof can be found in the book by Gorcakov [7], 

In [13], one of us considered the extension of these results to FC-groups 
in which \G/Z(G)\ < m or \G'\ < m, where m denotes an infinite cardinal. 
Here we go further and consider the extent to which the FC-condition 
can be relaxed. 

To describe our results, we define the following classes of groups. If m 
is an infinite cardinal, the class mC consists of those groups G in which 
\G: CG(x)\ < m for each xeG. Zm is the subclass of mC consisting of 
those groups G in which \G: CG(S)\ < m for each subset S g G such 
that \S\ < m. See [4] and [5] for theorems concerning the abelian subgroup 
structure of wC-groups. 

In the case m = «0, both these classes coincide with the class of FC-
groups and so either class may be considered as a generalization of the 
class of FC-groups. As was shown in [13], the condition on Zw-groups 
makes these groups much easier to work with, and here we are able to 
prove the following results. 

*The major portion of this work was done while the first author was on the faculty of 
the University of Colorado at Denver. 
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