ON THE STRUCTURE OF TORCH RINGS

ALBERTO FACCHINI

Torch rings appeared for the first time in the literature, under the name of ?-rings, when it was tried to characterize the commutative rings whose finitely generated modules are direct sums of cyclic modules ([8]; see [4] for an exposition of the history of the problem and the techniques with which it has been solved). Later torch rings have also appeared in [10] in the study of the commutative rings R with the property that the total ring of fractions of R / I is self-injective for all ideals I of R. In this paper we study the structure of torch rings and give an example of a torch ring which is not a trivial extension. This answers a question posed by T. Shores and R. Wiegand in [8].

A commutative ring R with identity is a torch ring if 1) R is not local, 2) the nilradical $N(R)$ of R is a prime ideal and is a non-zero uniserial R-module, 3) $R / N(R)$ is an h-local domain, and 4) R is a locally almost maximal Bézout domain (see [4] for the terminology.) Shores and Wiegand constructed a torch ring which was a trivial extension. Recall that an extension of the ring S by the S-module N is an exact sequence of abelian groups

$$
0 \longrightarrow N \xrightarrow{i} R \xrightarrow{p} S \longrightarrow 0,
$$

where R is a ring and p is a ring homomorphism such that $r \cdot i(x)=$ $i(p(r) \cdot x)$ for all $r \in R, x \in N$. An extension

$$
0 \longrightarrow N \xrightarrow{i} R \xrightarrow{p} S \longrightarrow 0
$$

of the ring S by the S-module N is trivial if there exists a ring homomorphism $g: S \rightarrow R$ with $p \circ g=1_{S} \quad[1$, Ch. 16].

Shores and Wiegand [8] have asked whether every torch ring R was a trivial extension of the ring $R / N(R)$ by its nilradical $N(R)$. In the first part of this paper we construct a torch ring R of characteristic p^{2}, where p is a prime; if R has characteristic p^{2}, the domain $R / N(R)$ must have characteristic p, so that there do not exist homomorphisms $R / N(R) \rightarrow R$.

[^0]
[^0]: Partially supported by a grant of the Italian Consiglio Nazionale delle Ricerche (National Research Council).

 Received by the editors on November 27, 1981, and in revised form on June 23, 1982. Copyright (c) 1983 Rocky Mountain Mathematics Consortium 423

