OSCILLATION PROPERTIES OF FORCED THIRD ORDER DIFFERENTIAL EQUATIONS

W.E. TAYLOR, JR.

Introduction. A great deal of literature exists on the oscillation and nonoscillation of the equation

$$
\begin{equation*}
y^{\prime \prime \prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

where $q(t)$ is a positive continuous function defined on $[0, \infty)$. However, little seems to be known about equations of the type

$$
\begin{equation*}
y^{\prime \prime \prime}+q(t) y=f(t) \tag{2}
\end{equation*}
$$

where $f(t)$ is continuous and changes sign arbitrarily on $[0, \infty)$. The asymptotic properties of

$$
\begin{equation*}
y^{\prime \prime}+q(t) y=f(t) \tag{3}
\end{equation*}
$$

have been studied in several works, some which include the investigations of Burton and Grimmer [1], Keener [3] and Hammett [2]. Hammett, in particular, has given conditions under which the nonoscillatory solutions of (3) tend to zero. The main purpose of this work is to carry out a similar study for (2). The techniques used herein are patterned after those in [6] in which Singh concentrated on equations with retarded arguments.

Recall that a solution of (1) or (2) is called oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise. A solution y is termed quickly oscillatory if there exists an increasing sequence of zeros of $y,\left\{t_{i}\right\}_{i=1}^{\infty}$ with the property that $\lim _{i \rightarrow \infty}\left(t_{i+1}-t_{i}\right)=0$. The concept of quickly oscillatory solutions is also considered in other works, see [4] and [7].

Main result. It is well-known that if z is a nontrivial solution of $z^{\prime \prime}+$ $q(t) z=0$ having at least two zeros on [$c, d]$, then $(d-c) \int_{c}^{d} q(t) d t>4$. This inequality is sometimes called Lyapunov's inequality. Lovelady in [5] recently obtained analogous results for (1),

THEOREM 1. If u is a nontrivial solution of (1) satisfying $u(a)=u(b)=0$, and $u(x) \neq 0$ on (a, b), then

