STEFFENSEN TYPE INEQUALITIES

A. M. FINK

Dedicated to Professor Lloyd K. Jackson on the occasion of his sixtieth birthday.

1. Introduction. Stephensen's inequality has a long and varied history, see Mitrinović [3, pg. 107–119], for example. The simplest version is the following theorem.

THEOREM A. Let F be non-decreasing and $0 \leq g \leq 1$, both functions continuous. Then

(1)
$$\int_0^a f \, dx \leq \int_0^1 fg \, dx \leq \int_{1-a}^1 f \, dx$$

where $a = \int_0^1 g \, dx$.

Recently Milovanović and Pečarič [2] have shown that the same conclusions hold if $0 \le g \le 1$ is replaced by

(i)
$$\int_x^1 g \, dt \ge 0 \text{ and } \int_0^x g \, dt \le x, \, x \in [0, \, 1];$$

for the left hand inequality of (1) and for the right hand inequality

(ii)
$$\int_{x}^{1} g \, dt < 1-x, \quad \int_{0}^{x} g \, dt \ge 0, \, x \in [0, \, 1].$$

They further prove versions of (1) with f satisfying a higher monotonicity.

In this paper we show that Theorem A as well as the versions of Theorem A proved in [2] are simple corollaries of Theorem D and its extensions proved in this paper.

THEOREM B. Let M_0 be the class of non-negative non-decreasing integrable functions, and μ a (signed) regular Borel measure. Then

(2)
$$\int_0^1 f \, d\mu \ge 0$$

holds for all $f \in M_0$ if and only if

Received by the editors on June 15, 1981.

Copyright © 1982 Rocky Mountain Mathematics Consortium