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ON LIE GROUPS WITH MINIMAL GENERATING 
SETS OF ORDER EQUAL TO THEIR DIMENSION 

RICHARD M. KOCH AND FRANKLIN LOWENTHAL 

ABSTRACT. Let G be a connected Lie group with Lie algebra g, 
{Xu . . . , X,\ a minimal generating set for g. The order of genera­
tion of G with respect to [Xl9 ..., X,\ is the smallest integer M 
such that every element of G can be written as a product of M 
elements taken from expfyXJ, . . . , exp(tX,). We find all G which 
admit minimal generating sets {Xu . . . , Xn] with n = dim G; for 
each such set we construct an algorithm for computing the order of 
generation of G. 

I. Introduction. A connected Lie group G is generated by one-parameter 
subgroups exp(^Ar

1), . . . , exp(f A",) if every element of G can be written as 
a finite product of elements chosen from these subgroups. In this case, 
define the order of generation of G to be the least positive integer M such 
that every element of G possesses such a representation of length at most 
M ; if no such integer exists let the order of generation of G be infinity. 
The order of generation will, of course, depend upon the one-parameter 
subgroups. Computation of the order of generation of G for given Xh ..., 
X/ is analogous to finding the greatest wordlength needed to write each 
element of a finite group in terms of generators gh . . . , g,. 

The subgroups exp(fZi), . . . , exp(^Ar
/) generate G just in case Xi, . . . , 

X/ generate the Lie algebra g of G. Indeed the set of all finite products of 
elements from exp(rAr

1), . . . , e x p ( ^ ) is an arcwise connected subgroup 
of G and so a Lie subgroup by Yamabe's theorem [10] ; clearly the Lie 
algebra of this subgroup is the subalgebra of g generated by Xh . . . , X,. 

It is natural to restrict attention to minimal generating sets; from now 
on, then, suppose that no subset of {XÌ9 . . . , X,} generates g. Call two 
generating sets {Xl9 . . . , X,} and {YÌ9 . . . , Y,} equivalent if it is possible 
to find an automorphism G of C7, a permutation % of {1, . . . , / } , and 
non-zero constants Xi, ...,%, such that X( = Àt<7^(YTU)). The order of 
generation of G depends only on the equivalence class of the generating 
set. 

If {Xl9 . . . , X,} is a minimal generating set for G and dim G > 1, 2 g / 
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