ENDOMORPHISM RINGS AND SUBGROUPS OF FINITE RANK TORSION-FREE ABELIAN GROUPS

DAVID M. ARNOLD*

Let A be a finite rank torsion-free abelian group and let $E(A)$ denote the endomorphism ring of A. Then $Q \otimes_{Z} E(A)=Q E(A)$ and $E(A) / p E(A)$ are artinian algebras, where Z is the ring of integers, Q is the field of rationals, and p is a prime of Z.

Define A to be Q-simple if $Q E(A)$ is a simple algebra, and p-simple for a prime p of Z if $p E(A)=E(A)$ or if $E(A) / p E(A)$ is a simple algebra. In contrast to finite rank torsion-free groups in general, groups that are p simple for each p have some pleasant decomposition properties.

Theorem I. A reduced group A is p-simple for each prime p of Z if and only if $A=A_{1} \oplus \cdots \oplus A_{k}$, where each A_{i} is fully invariant in A, each A_{i} is Q-simple and p-simple for each prime p of Z, and if p is a prime of Z then there is some j with $A / p A=A_{j} / p A_{j}$.

Theorem II. A group A is Q-simple and p-simple for each prime p of Z if and only if $A=B_{1} \oplus \cdots \oplus B_{n}$, where each B_{i} is strongly indecomposable, Q-simple and p-simple for each prime p of Z and B_{i} is nearly isomorphic to B_{j} (in the sense of Lady [7]) for each i and j.

Suppose that A is Q-simple and p-simple for each prime p of Z. Then A is indecomposable if and only if A is strongly indecomposable. Furthermore, if $S=$ Center $E(A)$, then S is a subring of an algebraic number field such that every element of S is a rational integral multiple of a unit of S, as described in [1], and $E(A)$ is a maximal S-order in $Q E(A)$.

Examples of groups that are Q-simple and p-simple for each prime p of Z include: indecomposable strongly homogeneous groups (characterized in [1]); indecomposable groups with p-rank $\leqq 1$ for each prime p of Z (Murley [8]); and indecomposable quasi-pure-projective and quasi-pureinjective groups ([4]).

Define A to be irreducible if $Q A$ is an irreducible $Q E(A)$-module (Reid [10]) and p-irreducible, for a prime p of Z, if $A / p A$ is an irreducible $E(A) /$ $p E(A)$-module. If A is irreducible (p-irreducible), then A is Q-simple

[^0]
[^0]: *Research supported, in part, by N.S.F. Grant MCS 77-03458-A01.
 Received by the editors on October 15, 1979 and in revised form on December 22, 1980.

