PERTURBATIONS OF A BOUNDARY VALUE PROBLEM WITH POSITIVE, INCREASING AND CONVEX NONLINEARITY

B. ZWAHLEN

1. Introduction. Let ρ_{t} be a family of positive functions:

$$
\rho_{t}(x)=\rho_{0}(x)+t \pi(x), x \in[-1,+1], t \in[-1,+1] .
$$

For a fixed t we consider the boundary value problem (BVP):

$$
(\mathrm{BVP} t)\left\{\begin{array}{l}
-u^{\prime \prime}(x)=\lambda \rho_{t}(x) f(u(x)), x \in(-1,+1) \\
u(-1)=u(+1)=0,
\end{array}\right.
$$

where λ is a non-negative parameter and f a positive, increasing and convex function. Under these conditions there is a critical value $\lambda_{t}^{*}>0$ such that ($\mathrm{BVP} t$) has at least one solution for $\lambda \in\left(0, \lambda_{t}^{*}\right)$ and no solution for $\lambda>\lambda_{t}^{*}$.

Thinking of $(\operatorname{BVP} t=0)$ as the unperturbed problem, it is the purpose of this paper to study λ_{t}^{*} as a function of the perturbation parameter t. Our result is a condition which implies the inequality $\lambda_{t}^{*}<\lambda_{0}^{*}$ for small positive (or negative) t. This condition involves only the perturbation π and the solutions of (BVP0) at λ_{0}^{*} and of its linearization. The method which leads to this result is to develop ($\mathrm{BVP} t$) around the unperturbed problem. Thus we find a bifurcation equation in t, which has to be discussed.

Our paper is organized as follows: $\S 2$ hypotheses; $\S 3$ here we reproduce some known results which we use in the next section; $\S 4$ statement and proof of our perturbation lemma.
2. Hypotheses. Let $I=\{x \in \mathbf{R} /|x|<1\}, \bar{I}$ its closure, $\mathbf{R}_{+}=\{\xi \in \mathbf{R} /$ $\xi \geqq 0\}, \lambda \in R_{+}$. We make the following hypotheses:

H1) $\rho_{0} ; \bar{I} \rightarrow \mathbf{R}$ continuous and positive.
$\pi: \bar{I} \rightarrow \mathbf{R}$ continuous and $|\pi(x)|<\rho_{0}(x), x \in \bar{I}$.
$\rho_{t}(x)=\rho_{0}(x),+t \pi(x), x \in \bar{I}, t \in \bar{I}$.
H2) f : $\mathbf{R}_{+} \rightarrow \mathbf{R}$ continuously differentiable and

$$
f(0)>0, \lim _{\xi \rightarrow+\infty} \frac{f(\xi)}{\xi}=\infty, f^{\prime}(0) \geqq 0, f^{\prime} \text { strictly increasing. }
$$

Thus f is positive, strictly increasing and strictly convex. We write

[^0]
[^0]: Received by the editors on February 15, 1980, and in revised form on March 31, 1981.
 Copyright (c) 1982 Rocky Mountain Mathematics Consortium

