A NONSTANDARD PROOF OF THE MARTINGALE CONVERGENCE THEOREM

LESTER L. HELMS* AND PETER A. LOEB*

In this note we use A. Robinson's [5] nonstandard analysis to give an elementary proof of the almost everywhere convergence of an L^1 -bounded submartingale. Here, the index set $\mathscr I$ is a countable subset of the real numbers R; we assume that $\mathscr I$ contains the natural numbers N, but any cofinal subset of R will do. The continuous parameter martingale convergence theorem usually reduces to the case considered here. Our proof does not use the notion of a stopping time. It does employ a nonstandard criterion for almost everywhere convergence and demonstrates the usefulness of that criterion. It also produces the limit function.

We shall use the notation from [4] to which we refer the reader for further details about nonstandard analysis in general. We assume that we are working with a fixed \aleph_1 -saturated, nonstandard extension of a standard structure. Of course, *R and *N denote the nonstandard extensions of R and N, and $a \cong b$ means that a - b is infinitesimal in *R. If (X, \mathscr{F}, μ) is an internal measure space and $g: X \to *R \cup \{-\infty, +\infty\}$ is internal and \mathscr{F} -measurable, then (following K. Stroyan) we shall say that $g \cong 0$ nearly surely (n.s.) when the following holds: For some infinitesimal $\varepsilon > 0$, $\mu(|g| > \varepsilon) \cong 0$. Clearly, $g \cong 0$ n.s. if and only if for each $\varepsilon > 0$ in R, $\mu(|g| > \varepsilon) < \varepsilon$.

We now establish a nonstandard criterion for almost everywhere convergence. Here, as later, \mathscr{I} denotes a countable subset of \mathbf{R} with $\mathbf{N} \subset \mathscr{I}$. The ordering on \mathscr{I} is the ordering inherited from \mathbf{R} . We shall use n, m, and k to denote natural numbers, while i and j will denote elements of \mathscr{I} or \mathscr{I} . Moreover, $\{i: n \leq i \leq m\}$ will denote the set of indices in just \mathscr{I} with $n \leq i \leq m$, while if γ and η are in $\mathbf{N} - \mathbf{N}$, then $\{i: \gamma \leq i \leq \eta\}$ will denote the set of indices in \mathscr{I} with $\gamma \leq i \leq \eta$. Given $n \in \mathbf{N}$, $\bigcup_{i \geq n} A_i$ will denote $\bigcup \{A_i: i \in \mathscr{I}, i \geq n\}$.

THEOREM 1. Let (X, \mathcal{F}, μ) be a standard measure space with $\mu(X) < +\infty$, and for each $i \in \mathcal{I}$, let g_i be an extended real-valued, \mathcal{F} -measurable function on X.

^{*}This research was supported in part by a grant from the U.S. National Science Foundation (NSF MCS 76-07471).

Received by the editors on July 11, 1980, and in revised form on October 14, 1980.

Copyright © 1982 Rocky Mountain Mathematics Consortium