A SIMPLE PROOF AND GENERALIZATION OF WEGLORZ' CHARACTERIZATION OF NORMALITY FOR IDEALS

DONALD H. PELLETIER*

Abstract

A condition equivalent to normality for κ-complete ideals on a regular uncountable cardinal κ has been established by B. Weglorz as a corollary to his study of Ramsey and pseudonormal ideals. By isolating a critical combinatorial property (see Lemma 3) we are able to provide a direct, elementary proof of this equivalence and to generalize the result to arbitrary non-principal ideals.

1. Notation and definitions. Our notation is that used in Baumgartner, Taylor, Wagon [1]. If κ is a regular uncountable cardinal, an ideal on κ is a collection I of subsets of κ such that whenever $X, Y \in I$ and $Z \cong X \cup Y$, then $Z \in I$. I is called non-principal if I contains all the singleton subsets. I is called proper if $\kappa \notin I$. I is κ-complete if whenever $\beta<\kappa$ and $\left\{X_{\alpha} \mid \alpha<\right.$ $\beta\} \cong I$, then $\bigcup_{\alpha<\beta} X_{\alpha} \in I$. An important ideal on κ is the generalized Fréchet ideal, $I_{\kappa}=\{X \subseteq \kappa| | X \mid<\kappa\}$. Note that if I is a non-principal, κ-complete ideal on κ, then $I_{\kappa} \subseteq I$. However, we do not wish to restrict our attention in this paper to κ-complete ideals; the phrase " I is an (arbitrary) ideal on κ " will simply mean " I is a proper, non-principal ideal on κ ''.

If I is an ideal on κ, then $I^{+}=\{X \subseteq \kappa \mid X \notin I\}$ and $I^{*}=\{X \subseteq \kappa \mid \kappa-$ $X \in I\}$. Sets in I are said to be of " I-measure zero", sets in I^{+}are said to be of "positive I-measure", and sets in I * are said to be of " I-measure one."

If I is an ideal on κ and $A \in I^{+}$, then the restriction of I to A, denoted by $I \mid A$, is the ideal on κ given by $I \mid A=\{X \cong \kappa \mid X \cap A \in I\}$.

If I is an ideal on κ and $A \subseteq \kappa$ and $f: A \rightarrow \kappa$ is a function, f is called I-small if and only if for every $\alpha<\kappa, f^{-1}(\{\alpha\}) \in I ; f$ is called regressive on A if and only if for every $\alpha \in A-\{0\}, f(\alpha)<\alpha$.

If $\left\{X_{\alpha} \mid \alpha<\kappa\right\}$ is a sequence of κ-many subsets of κ, then the diagonal union of the sequence, denoted by $\nabla\left\{X_{\alpha} \mid \alpha<\kappa\right\}$ or by $\nabla_{\alpha<\kappa} X_{\alpha}$, is defined to be $\left\{\beta<\kappa \mid \exists \alpha<\beta, \beta \in X_{\alpha}\right\}=\bigcup\left\{X_{\alpha}-(\alpha+1) \mid \alpha<\kappa\right\}$.

[^0]
[^0]: *We wish to thank The National Science and Engineering Research Council of Canda for partial support, the Mathematics Department of Smith College for their generous hospitality, Frank Wattenberg for a useful conversation, and the referee for suggesting some significant improvements.

 Received by the editors on October 18, 1979, and in revised form on February 7, 1980.

