A SIMPLE PROOF AND GENERALIZATION OF WEGLORZ' CHARACTERIZATION OF NORMALITY FOR IDEALS

DONALD H. PELLETIER*

ABSTRACT. A condition equivalent to normality for κ -complete ideals on a regular uncountable cardinal κ has been established by B. Weglorz as a corollary to his study of Ramsey and pseudonormal ideals. By isolating a critical combinatorial property (see Lemma 3) we are able to provide a direct, elementary proof of this equivalence and to generalize the result to arbitrary non-principal ideals.

1. Notation and definitions. Our notation is that used in Baumgartner, Taylor, Wagon [1]. If κ is a regular uncountable cardinal, an *ideal on* κ is a collection I of subsets of κ such that whenever X, $Y \in I$ and $Z \subseteq X \cup Y$, then $Z \in I$. I is called *non-principal* if I contains all the singleton subsets. I is called *proper* if $\kappa \notin I$. I is κ -complete if whenever $\beta < \kappa$ and $\{X_{\alpha} | \alpha < \beta\} \subseteq I$, then $\bigcup_{\alpha < \beta} X_{\alpha} \in I$. An important ideal on κ is the generalized Fréchet ideal, $I_{\kappa} = \{X \subseteq \kappa | |X| < \kappa\}$. Note that if I is a non-principal, κ -complete ideal on κ , then $I_{\kappa} \subseteq I$. However, we do not wish to restrict our attention in this paper to κ -complete ideals; the phrase "I is an (arbitrary) ideal on κ " will simply mean "I is a proper, non-principal ideal on κ ".

If I is an ideal on κ , then $I^+ = \{X \subseteq \kappa \mid X \notin I\}$ and $I^* = \{X \subseteq \kappa \mid \kappa - X \in I\}$. Sets in I are said to be of "I-measure zero", sets in I^+ are said to be of "I-measure", and sets in I^* are said to be of "I-measure one."

If I is an ideal on κ and $A \in I^+$, then the restriction of I to A, denoted by I|A, is the ideal on κ given by $I|A = \{X \subseteq \kappa \mid X \cap A \in I\}$.

If I is an ideal on κ and $A \subseteq \kappa$ and $f: A \to \kappa$ is a function, f is called *I-small* if and only if for every $\alpha < \kappa, f^{-1}(\{\alpha\}) \in I$; f is called regressive on A if and only if for every $\alpha \in A - \{0\}$, $f(\alpha) < \alpha$.

If $\{X_{\alpha} | \alpha < \kappa\}$ is a sequence of κ -many subsets of κ , then the *diagonal union* of the sequence, denoted by $\nabla \{X_{\alpha} | \alpha < \kappa\}$ or by $\nabla_{\alpha < \kappa} X_{\alpha}$, is defined to be $\{\beta < \kappa | \exists \alpha < \beta, \beta \in X_{\alpha}\} = \bigcup \{X_{\alpha} - (\alpha + 1) | \alpha < \kappa\}.$

^{*}We wish to thank The National Science and Engineering Research Council of Canda for partial support, the Mathematics Department of Smith College for their generous hospitality, Frank Wattenberg for a useful conversation, and the referee for suggesting some significant improvements.

Received by the editors on October 18, 1979, and in revised form on February 7, 1980.

Copyright © 1981 Rocky Mountain Mathematics Consortium